

Functional Programming in C#: How to
write better C# code
Enrico Buonanno

Copyright
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. For
more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Development editor: Marina Michaels

Technical development editor: Joel Kotarski

Review editor: Aleksandar Dragosavljević

Project editor: Kevin Sullivan

Copyeditor: Andy Carroll

Proofreader: Melody Dolab

Technical proofreaders: Paul Louth, Jürgen Hoetzel

Typesetter: Gordan Salinovic

Cover designer: Leslie Haimes

Cartoons: Viseslav Radović,

Richard Sheppard

Graphic illustrations: Chuck Larson

ISBN 9781617293955

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

http://www.manning.com

Dedication

To the little monkey...

Brief Table of Contents
Copyright

Brief Table of Contents

Table of Contents

Preface

Acknowledgments

About this Book

1. Core concepts

Chapter 1. Introducing functional programming

Chapter 2. Why function purity matters

Chapter 3. Designing function signatures and types

Chapter 4. Patterns in functional programming

Chapter 5. Designing programs with function composition

2. Becoming functional

Chapter 6. Functional error handling

Chapter 7. Structuring an application with functions

Chapter 8. Working effectively with multi-argument functions

Chapter 9. Thinking about data functionally

Chapter 10. Event sourcing: a functional approach to persistence

3. Advanced techniques

Chapter 11. Lazy computations, continuations, and the beauty of monadic composition

Chapter 12. Stateful programs and stateful computations

Chapter 13. Working with asynchronous computations

Chapter 14. Data streams and the Reactive Extensions

Chapter 15. An introduction to message-passing concurrency

 Epilogue: what next?

 Inverted chapter dependency graph

 The core functions of FP

Index

List of Figures

List of Tables

List of Listings

Table of Contents
Copyright

Brief Table of Contents

Table of Contents

Preface

Acknowledgments

About this Book

1. Core concepts

Chapter 1. Introducing functional programming

1.1. What is this thing called functional programming?

1.1.1. Functions as first-class values

1.1.2. Avoiding state mutation

1.1.3. Writing programs with strong guarantees

1.2. How functional a language is C#?

1.2.1. The functional nature of LINQ 1.2.2.

Functional features in C# 6 and C# 7 1.2.3.

A more functional future for C#?

1.3. Thinking in functions

1.3.1. Functions as maps

1.3.2. Representing functions in C#

1.4. Higher-order functions

1.4.1. Functions that depend on other functions

1.4.2. Adapter functions

1.4.3. Functions that create other functions

1.5. Using HOFs to avoid duplication

1.5.1. Encapsulating setup and teardown into a HOF

1.5.2. Turning the using statement into a HOF

1.5.3. Tradeoffs of HOFs

1.6. Benefits of functional programming

Exercises

Summary

Chapter 2. Why function purity matters

2.1. What is function purity?

2.1.1. Purity and side effects

2.1.2. Strategies for managing side effects

2.2. Purity and concurrency

2.2.1. Pure functions parallelize well

2.2.2. Parallelizing impure functions

2.2.3. Avoiding state mutation

2.3. Purity and testability

2.3.1. In practice: a validation scenario

2.3.2. Bringing impure functions under test

2.3.3. Why testing impure functions is hard

2.3.4. Parameterized unit tests

2.3.5. Avoiding header interfaces

2.4. Purity and the evolution of computing

Exercises

Summary

Chapter 3. Designing function signatures and types

3.1. Function signature design

3.1.1. Arrow notation

3.1.2. How informative is a

signature?3.2. Capturing data with data

objects

3.2.1. Primitive types are often not specific enough

3.2.2. Constraining inputs with custom types 3.2.3.

Writing “honest” functions

3.2.4. Composing values with tuples and objects

3.3. Modeling the absence of data with Unit

3.3.1. Why void isn’t ideal

3.3.2. Bridging the gap between Action and Func with Unit

3.4. Modeling the possible absence of data with Option

3.4.1. The bad APIs you use every day

3.4.2. An introduction to the Option type

3.4.3. Implementing Option

3.4.4. Gaining robustness by using Option instead of null

3.4.5. Option as the natural result type of partial functions

Exercises

Summary

Chapter 4. Patterns in functional programming

4.1. Applying a function to a structure’s inner values

4.1.1. Mapping a function onto a sequence 4.1.2.

Mapping a function onto an Option 4.1.3. How

Option raises the level of abstraction 4.1.4.

Introducing functors

4.2. Performing side effects with ForEach

4.3. Chaining functions with Bind

4.3.1. Combining Option-returning functions

4.3.2. Flattening nested lists with Bind 4.3.3.

Actually, it’s called a monad

4.3.4. The Return function

4.3.5. Relation between functors and monads 4.4.

Filtering values with Where

4.5. Combining Option and IEnumerable with Bind

4.6. Coding at different levels of abstraction

4.6.1. Regular vs. elevated values

4.6.2. Crossing levels of abstraction

4.6.3. Map vs. Bind, revisited

4.6.4. Working at the right level of abstraction

Exercises

Summary

Chapter 5. Designing programs with function composition

5.1. Function composition

5.1.1. Brushing up on function composition

5.1.2. Method chaining

5.1.3. Composition in the elevated world

5.2. Thinking in terms of data flow

5.2.1. Using LINQ’s composable API

5.2.2. Writing functions that compose well

5.3. Programming workflows

5.3.1. A simple workflow for validation

5.3.2. Refactoring with data flow in mind

5.3.3. Composition leads to greater flexibility

5.4. An introduction to functional domain modeling

5.5. An end-to-end server-side workflow

5.5.1. Expressions vs. statements

5.5.2. Declarative vs. imperative

5.5.3. The functional take on layering

Exercises

Summary

2. Becoming functional

Chapter 6. Functional error handling

6.1. A safer way to represent outcomes

6.1.1. Capturing error details with Either

6.1.2. Core functions for working with Either

6.1.3. Comparing Option and Either

6.2. Chaining operations that may fail 6.3.

Validation: a perfect use case for Either

6.3.1. Choosing a suitable representation for errors

6.3.2. Defining an Either-based API

6.3.3. Adding validation logic

6.4. Representing outcomes to client applications

6.4.1. Exposing an Option-like interface

6.4.2. Exposing an Either-like interface

6.4.3. Returning a result DTO

6.5. Variations on the Either theme

6.5.1. Changing between different error representations

6.5.2. Specialized versions of Either

6.5.3. Refactoring to Validation and Exceptional

6.5.4. Leaving exceptions behind?

Exercises

Summary

Chapter 7. Structuring an application with functions

7.1. Partial application: supplying arguments piecemeal

7.1.1. Manually enabling partial application

7.1.2. Generalizing partial application

7.1.3. Order of arguments matters

7.2. Overcoming the quirks of method resolution

7.3. Curried functions: optimized for partial application

7.4. Creating a partial-application-friendly API

7.4.1. Types as documentation

7.4.2. Particularizing the data access function

7.5. Modularizing and composing an application

7.5.1. Modularity in OOP

7.5.2. Modularity in FP

7.5.3. Comparing the two approaches

7.5.4. Composing the application

7.6. Reducing a list to a single value

7.6.1. LINQ’s Aggregate method

7.6.2. Aggregating validation results

7.6.3. Harvesting validation errors

Exercises

Summary

Chapter 8. Working effectively with multi-argument functions

8.1. Function application in the elevated world

8.1.1. Understanding applicatives

8.1.2. Lifting functions

8.1.3. An introduction to property-based testing

8.2. Functors, applicatives, monads

8.3. The monad laws

8.3.1. Right identity

8.3.2. Left identity

8.3.3. Associativity

8.3.4. Using Bind with multi-argument functions

8.4. Improving readability by using LINQ with any monad

8.4.1. Using LINQ with arbitrary functors

8.4.2. Using LINQ with arbitrary monads

8.4.3. let, where, and other LINQ clauses

8.5. When to use Bind vs. Apply

8.5.1. Validation with smart constructors

8.5.2. Harvesting errors with the applicative flow

8.5.3. Failing fast with the monadic flow

Exercises

Summary

Chapter 9. Thinking about data functionally

9.1. The pitfalls of state mutation

9.2. Understanding state, identity, and change

9.2.1. Some things never change

9.2.2. Representing change without mutation

9.3. Enforcing immutability

9.3.1. Immutable all the way down

9.3.2. Copy methods without boilerplate?

9.3.3. Leveraging F# for data types

9.3.4. Comparing strategies for immutability: an ugly contest

9.4. A short introduction to functional data structures

9.4.1. The classic functional linked list

9.4.2. Binary trees

Exercises

Summary

Chapter 10. Event sourcing: a functional approach to persistence

10.1. Thinking functionally about data storage

10.1.1. Why data storage should be append-only

10.1.2. Relax, and forget about storing state

10.2. Event sourcing basics

10.2.1. Representing events

10.2.2. Persisting events

10.2.3. Representing state

10.2.4. An interlude on pattern matching

10.2.5. Representing state transitions

10.2.6. Reconstructing the current state from past events

10.3. Architecture of an event-sourced system

10.3.1. Handling commands

10.3.2. Handling events

10.3.3. Adding validation

10.3.4. Creating views of the data from events

10.4. Comparing different approaches to immutable storage

10.4.1. Datomic vs. Event Store

10.4.2. How event-driven is your

domain?Summary

3. Advanced techniques

Chapter 11. Lazy computations, continuations, and the beauty of monadic composition

11.1. The virtue of laziness

11.1.1. Lazy APIs for working with Option

11.1.2. Composing lazy computations

11.2. Exception handling with Try

11.2.1. Representing computations that may fail

11.2.2. Safely extracting information from a JSON object

11.2.3. Composing computations that may fail

11.2.4. Monadic composition: what does it mean?

11.3. Creating a middleware pipeline for DB access

11.3.1. Composing functions that perform setup/teardown

11.3.2. A recipe against the pyramid of doom

11.3.3. Capturing the essence of a middleware function

11.3.4. Implementing the query pattern for middleware

11.3.5. Adding middleware that times the operation

11.3.6. Adding middleware that manages a DB transaction

Summary

Chapter 12. Stateful programs and stateful computations

12.1. Programs that manage state

12.1.1. Maintaining a cache of retrieved resources

12.1.2. Refactoring for testability and error handling

12.1.3. Stateful computations

12.2. A language for generating random data

12.2.1. Generating random integers

12.2.2. Generating other primitives

12.2.3. Generating complex structures

12.3. A general pattern for stateful computations

Summary

Chapter 13. Working with asynchronous computations

13.1. Asynchronous computations

13.1.1. The need for asynchrony

13.1.2. Representing asynchronous operations with Task

13.1.3. Task as a container for a future value

13.1.4. Handling failure

13.1.5. An HTTP API for currency conversion

13.1.6. If it fails, try a few more times

13.1.7. Running asynchronous operations in parallel

13.2. Traversables: working with lists of elevated values

13.2.1. Validating a list of values with monadic Traverse

13.2.2. Harvesting validation errors with applicative Traverse

13.2.3. Applying multiple validators to a single value 13.2.4.

Using Traverse with Task to await multiple results 13.2.5.

Defining Traverse for single-value structures

13.3. Combining asynchrony and validation (or any other two monadic effects)

13.3.1. The problem of stacked monads

13.3.2. Reducing the number of effects

13.3.3. LINQ expressions with a monad stack

Summary

Chapter 14. Data streams and the Reactive Extensions

14.1. Representing data streams with IObservable

14.1.1. A sequence of values in time

14.1.2. Subscribing to an IObservable

14.2. Creating IObservables

14.2.1. Creating a timer

14.2.2. Using Subject to tell an IObservable when it should signal

14.2.3. Creating IObservables from callback-based subscriptions

14.2.4. Creating IObservables from simpler structures

14.3. Transforming and combining data streams

14.3.1. Stream transformations

14.3.2. Combining and partitioning streams

14.3.3. Error handling with IObservable

14.3.4. Putting it all together

14.4. Implementing logic that spans multiple events

14.4.1. Detecting sequences of pressed keys

14.4.2. Reacting to multiple event sources

14.4.3. Notifying when an account becomes overdrawn

14.5. When should you use IObservable?

Summary

Chapter 15. An introduction to message-passing concurrency

15.1. The need for shared mutable state

15.2. Understanding message-passing concurrency

15.2.1. Implementing agents in C#

15.2.2. Getting started with agents

15.2.3. Using agents to handle concurrent requests

15.2.4. Agents vs. actors

15.3. Functional APIs, agent-based implementations

15.3.1. Agents as implementation details

15.3.2. Hiding agents behind a conventional API

15.4. Message-passing concurrency in LOB applications

15.4.1. Using an agent to synchronize access to account data

15.4.2. Keeping a registry of accounts

15.4.3. An agent is not an object

15.4.4. Putting it all together

Summary Epilogue:

what next?

 Inverted chapter dependency graph

The core functions of FP

Index

List of Figures

List of Tables

List of Listings

Preface
Today, functional programming (FP) is no longer brooding in the research departments of
universities; it has become an important and exciting part of mainstream programming. The
majority of the languages and frameworks created in the last decade are functional, leading some
to predict that the future of programming is functional. Meanwhile, popular object-oriented
languages like C# and Java see the introduction of more functional features with every new
release, enabling a multiparadigm programming style.

And yet, adoption in the C# community has been slow. Why is this so? One reason, I believe, is
the lack of good literature:

Most FP literature is written in and for functional languages, especially Haskell. For
developers with a background in OOP, this poses a programming-language barrier to
learning the concepts. Even though many of the concepts apply to a multiparadigm
language like C#, learning a new paradigm and a new language at once is a tall order.
Even more importantly, most of the books in the literature tend to illustrate functional
techniques and concepts with examples from the domains of mathematics or computer
science. For the majority of programmers who work on line-of-business (LOB)
applications day in and day out, this creates a domain gap and leaves them wondering how
relevant these techniques may be for real-world applications.

These shortcomings posed major stumbling blocks in my own path to learning FP. After tossing
aside the n-th book that explained something known as currying by showing how the add
function can be curried with the number 3, creating a function that can add 3 to any number (can
you think of any application where this would be even remotely useful?), I decided to pursue my
own research path. This involved learning half a dozen functional languages (some better than
others), and seeing which concepts from FP could be effectively applied in C# and in the kind of
applications most developers are paid to write, and it culminated in the writing of this book.

This book bridges the language gap for C# developers by showing how you can leverage
functional techniques in this language. It also bridges the domain gap by showing how these
techniques can be applied to typical business scenarios. I take a pragmatic approach and cover
functional techniques to the extent that they’re useful in a typical LOB application scenario, and
dispense with most of the theory behind FP.

Ultimately, you should care about FP because it gives you the following:

Power— This simply means that you can get more done with less code. FP raises the level
of abstraction, allowing you to write high-level code while freeing you from low-level
technicalities that add complexity but no value.
Safety— This is especially true when dealing with concurrency. A program written in the
imperative style may work well in a single-threaded implementation but cause all sorts of
bugs when concurrency comes in. Functional code offers much better guarantees in
concurrent scenarios, so it’s only natural that we’re seeing a surge of interest in FP in the
era of multicore processors.
Clarity— We spend more time maintaining and consuming existing code than writing new
code, so it’s important that our code be clear and intention-revealing. As you learn to think
functionally, achieving this clarity will become more natural.

If you’ve been programming in an object-oriented style for some time, it may take a bit of effort
and willingness to experiment before the concepts in this book come to fruition. To make sure
learning FP is an enjoyable and rewarding process, I have two recommendations:

Be patient— You may have to read some sections more than once. You may put the book
down for a few weeks and find that when you pick it up again, something that seemed
obscure suddenly starts to make sense.
Experiment in code— You won’t learn unless you get your hands dirty. The book
provides many examples and exercises, and many of the code snippets can be tested in the
REPL.

Your colleagues may be less eager to explore than you. Expect them to protest your adoption of
this new style and to look perplexed at your code and say things like, “why not just do x?”
(where x is boring, obsolete, and usually harmful). Don’t discuss. Just sit back and watch them
eventually turn around and use your techniques to solve issues they run into again and again.

Acknowledgments
I’d like to thank Paul Louth, who not only provided inspiration through his LanguageExt library—
from which I borrowed many good ideas—but who also graciously reviewed the book at various
stages.

Manning’s thorough editorial process ensured that the quality of this book is infinitely better than
if I had been left to my own means. For this, I’d like to thank the team that collaborated on the
book, including Mike Stephens, development editor Marina Michaels, technical editor Joel
Kotarski, technical proofreader Jürgen Hoetzel, and copyeditor Andy Carroll.

Special thanks to Daniel Marbach and Tamir Dresher for their technical insights, as well as to all
those who took part in the peer reviews, including Alex Basile, Aurélien Gounot, Blair Leduc,
Chris Frank, Daniel Marbach, Devon Burriss, Gonzalo Barba López, Guy Smith, Kofi Sarfo,
Pauli Sutelainen, Russell Day, Tate Antrim, and Wayne Mather.

Thanks to Scott Wlaschin for sharing his articles at http://fsharpforfunandprofit.com, and to the
many other members of the FP community who share their knowledge and enthusiasm through
articles, blogs, and open source.

http://fsharpforfunandprofit.com

About this Book
This book aims to show how you can leverage functional techniques in C# to write code that is
concise, elegant, robust, and maintainable.

Who should read this book

This book is for an ambitious breed of developer. You know the C# language and the .NET
framework. You have experience developing real-world applications and are familiar with OOP
concepts, patterns, and best practices. Yet, you’re looking to expand your arsenal by learning
functional techniques so that you can make the most out of C# as a multiparadigm language.

If you’re trying or planning to learn a functional language, this book will also be hugely
valuable, because you’ll learn how to think functionally in a language you’re familiar with.
Changing the way you think is the hard part; once that’s achieved, learning the syntax of any
particular language will be relatively easy.

How this book is organized

The book consists of 15 chapters, divided into 3 parts:

Part 1 covers the basic techniques and principles of functional programming. We’ll start by
looking at what functional programming is and how C# supports programming in a
functional style. We’ll then look at the power of higher-order functions, function purity
and its relation to testability, the design of types and function signatures, and how simple
functions can be composed into complex programs. By the end of part 1, you’ll have a
good feel for what a program written in a functional style looks like and for the benefits
that this style has to offer.
With these basic concepts covered, we’ll pick up some speed in part 2 and move on to
wider-reaching concerns, such as functional error handling, modularizing and composing
an application, and the functional approach to understanding state and representing change.
By the end of part 2, you’ll have acquired a set of tools enabling you to effectively tackle
many programming tasks using a functional approach.
Part 3 will tackle more advanced topics, including lazy evaluation, stateful computations,
asynchrony, data streams, and concurrency. Each chapter in part 3 introduces important
techniques that have the potential to completely change the way you write and think about
software.

You’ll find a more detailed breakdown of the topics in each chapter, and a representation of what
chapters are required before reading any particular chapter, on the inside front cover page.

Coding for real-world applications

The book aims to stay true to real-world scenarios. To do this, many examples deal with practical
tasks such as reading configuration, connecting to a database, validating HTTP requests, and so
on—things you may already know how to do, but you’ll see them with the fresh perspective of
functional thinking.

Throughout the book, I use a long-running example to illustrate how FP can help when writing
LOB applications. For this, I’ve chosen an online banking application for the fictitious Bank of
Codeland (BOC)—naff, I know, but at least it has the obligatory three-letter acronym. Because
most people have access to an online banking facility, it should be easy to imagine the required
functionality and plain to see how the problems discussed are relevant to real-world applications.

I also use scenarios to illustrate how to solve typical programming problems in a functional style.
The constant back and forth between practical examples and FP concepts will hopefully help
bridge the gap between theory and practice—something I found wanting in the existing
literature, as I mentioned.

Leveraging functional libraries

A language like C# may have functional features, but to fully leverage these you’ll often use
libraries that facilitate common tasks. Microsoft has provided several libraries that facilitate
programming in a functional style, including these:

System.Linq—Yes, in case you didn’t know, it’s a functional library! I assume you’re

familiar with it, given that it’s such an important part of .NET.
System.Collections.Immutable—This is a library of immutable collections, which we’ll start
using in chapter 9.
System.Reactive—This is an implementation of the Reactive Extensions for .NET, allowing
you to work with data streams, which we’ll discuss in chapter 14.

This still leaves out plenty of other important types and functions that are staples of FP. As a
result, several independent developers have written libraries to fill those gaps. To date, the most
complete of these is LanguageExt, a library written by Paul Louth to improve the C# developer’s
experience when coding functionally.[1]

1

LanguageExt is open source and available on GitHub and NuGet:
https://github.com/louthy/language-ext.

In the book, I don’t use LanguageExt directly; instead, I’ll show you how I developed my own
library of functional utilities, called LaYumba.Functional, even though it largely overlaps with
LanguageExt. This is pedagogically more useful, for several reasons:

The code will remain stable after the book is published.
You get to look under the hood and see that powerful functional constructs are deceptively
simple to define.
You can concentrate on the essentials: I’ll show you the constructs in their purest form, so
that you won’t be distracted by the details and edge cases that a full-fledged library
addresses.

https://github.com/louthy/language-ext

Code conventions and downloads

The code samples are in C# 7, and for the most part are compatible with C# 6. Language features
specifically introduced in C# 7 are only used in chapter 10 and beyond (and in a couple of
samples in section 1.2 that explicitly showcase C# 7).

You can execute many of the shorter snippets of code in a REPL, thereby gaining hands-on
practice with immediate feedback. The more extended examples are available for download at
https://github.com/la-yumba/functional-csharp-code, along with the exercises’ setup and
solutions.

Code listings in the book focus on the topic being discussed, and therefore may omit
namespaces, using statements, trivial constructors, or sections of code that appeared in a previous
listing and remain unchanged. If you’d like to see the full, compiling version of a listing, you’ll
find it in the code repository: https://github.com/la-yumba/functional-csharp-code.

https://github.com/la-yumba/functional-csharp-code
https://github.com/la-yumba/functional-csharp-code

Book forum

Purchase of Functional Programming in C# includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum, go to
https://forums.manning.com/forums/functional-programming-in-c-sharp. You can also learn
more about Manning’s forums and the rules of conduct at
https://forums.manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue
between individual readers and between readers and the author can take place. It is not a
commitment to any specific amount of participation on the part of the author, whose contribution
to the forum remains voluntary (and unpaid). We suggest you try asking the author some
challenging questions lest his interest stray! The forum and the archives of previous discussions
will be accessible from the publisher’s website as long as the book is in print.

https://forums.manning.com/forums/functional-programming-in-c-sharp
https://forums.manning.com/forums/about

About the author

Enrico Buonanno obtained an MS in Computer Science at Columbia University in 2001 and has
been working as a software developer and architect since. He’s worked on mission-critical
projects for prestigious companies in FinTech (including the Bank for International Settlements,
Barclays, and UBS) and other technology-driven businesses.

Part 1. Core concepts
In this part we’ll cover the basic techniques and principles of functional programming.

Chapter 1 starts by looking at what functional programming is, and how C# supports
programming in a functional style. It then delves deeper into higher-order functions, a
fundamental technique of FP.

Chapter 2 explains what pure functions are, why purity has important implications for a
function’s testability, and why pure functions lend themselves well to parallelization and other
optimizations.

Chapter 3 deals with principles for designing types and function signatures—things you thought
you knew but that receive a breath of fresh air when looked at from a functional perspective.

Chapter 4 introduces some of the core functions of FP: Map, Bind, ForEach, and Where (filter). These
functions provide the basic tools for interacting with the most common data structures in FP.

Chapter 5 shows how functions can be chained into pipelines that capture the workflows of your
program. It then widens the scope to developing a whole use case in a functional style.

By the end of part 1, you’ll have a good feel for what a program written in a functional style
looks like, and you’ll understand the benefits that this style has to offer.

Chapter 1. Introducing functional programming
This chapter covers

Benefits and tenets of functional programming
Functional features of the C# language
Representation of functions in C#
Higher-order functions

Functional programming is a programming paradigm: a different way of thinking about
programs than the mainstream, imperative paradigm you’re probably used to. For this reason,
learning to think functionally is challenging but also very enriching. My ambition is that after
reading this book, you’ll never look at code with the same eyes as before!

The learning process can be a bumpy ride. You’re likely to go from frustration at concepts that
seem obscure or useless to exhilaration when something clicks in your mind, and you’re able to
replace a mess of imperative code with just a couple of lines of elegant, functional code.

This chapter will address some questions you may have as you start on this journey: What
exactly is functional programming? Why should I care? Can I code functionally in C#? Is it
worth the effort?

We’ll start with a high-level overview of what functional programming (FP) is, and how well the
C# language supports programming in a functional style. We’ll then discuss functions and how
they’re represented in C#. Finally, we’ll dip our feet in the water with higher-order functions,
which I’ll illustrate with a practical example.

(1)

1.1. What is this thing called functional programming?

What exactly is functional programming? At a very high level, it’s a programming style that
emphasizes functions while avoiding state mutation. This definition is already twofold, as it
includes two fundamental concepts:

Functions as first-class values
Avoiding state mutation

Let’s see what these mean.

1.1.1. Functions as first-class values

In a language where functions are first-class values, you can use them as inputs or outputs of
other functions, you can assign them to variables, and you can store them in collections. In other
words, you can do with functions all the operations that you can do with values of any other type.

For example, type the following into the REPL:[1]

1

A REPL is a command-line interface allowing you to experiment with the language by
typing in statements and getting immediate feedback. If you use Visual Studio, you can start
the REPL by going to View > Other Windows > C# Interactive. On Mono, you can use the
csharp command. There are also several other utilities that allow you to run C# snippets
interactively, some even in the browser.

Func<int, int> triple = x => x * 3;

var range = Enumerable.Range(1, 3);

var triples = range.Select(triple);

triples // => [3, 6, 9]

In this example, you start by declaring a function that returns the triple of a given integer and
assigning it to the variable triple. You then use Range to create an IEnumerable<int> with the
values [1, 2, 3]. You then invoke Select (an extension method on IEnumerable), giving it the
range and the triple function as arguments; this creates a new IEnumerable containing the
elements obtained by applying the triple function to each element in the input range.

This short snippet demonstrates that functions are indeed first-class values in C#, because you
can assign the multiply-by-3 function to the variable triple, and give it as an argument to Select.
Throughout the book you’ll see that treating functions as values allows you to write some very
powerful and concise code.

1.1.2. Avoiding state mutation

If we follow the functional paradigm, we should refrain from state mutation altogether: once
created, an object never changes, and variables should never be reassigned. The term mutation
indicates that a value is changed in-place—updating a value stored somewhere in memory. For
example, the following code creates and populates an array, and then it updates one of the array’s
values in place:

(2)

int[] nums = { 1, 2, 3 };

nums[0] = 7;

nums // => [7, 2, 3]

Such updates are also called destructive updates, because the value stored prior to the update is
destroyed. These should always be avoided when coding functionally. (Purely functional
languages don’t allow in-place updates at all.)

Following this principle, sorting or filtering a list should not modify the list in place but should
create a new, suitably filtered or sorted list without affecting the original. Type the following into
the REPL to see what happens when sorting or filtering a list using LINQ’s Where and OrderBy
functions.

Listing 1.1. Functional approach: Where and OrderBy don’t affect the original list

As you can see, the original list is unaffected by the sorting or filtering operations, which yielded
new IEnumerables.

Let’s look at a counterexample. If you have a List<T>, you can sort it in place by calling its Sort
method.

Listing 1.2. Nonfunctional approach: List<T>.Sort sorts the list in place

var original = new List<int> { 5, 7, 1 };

original.Sort();

original // => [1, 5, 7]

In this case, after sorting, the original ordering is destroyed. You’ll see why this is problematic
right away.

Note

The reason you see both the functional and nonfunctional approaches in the framework is
historical: List<T>.Sort predates LINQ, which marked a decisive turn in a functional direction.

1.1.3. Writing programs with strong guarantees

Of the two concepts we just discussed, functions as first-class values initially seems more

(3)

exciting, and we’ll concentrate on it in the latter part of this chapter. But before we move on, I’d
like to briefly demonstrate why avoiding state mutation is also hugely beneficial, as it eliminates
many complexities caused by mutable state.

Let’s look at an example. (We’ll revisit these topics in more detail, so don’t worry if not
everything is clear at this point.) Type the following code into the REPL.

Listing 1.3. Mutating state from concurrent processes yields unpredictable results

Here you define nums to be a list of all integers between 10,000 and -10,000; their sum should
obviously be 0. You then create two tasks: task1 computes and prints out the sum; task2 first
sorts the list and then computes and prints the sum. Each of these tasks will correctly compute
the sum if run independently. When you run both tasks in parallel, however, task1 comes up with
an incorrect and unpredictable result.

It’s easy to see why: as task1 reads the numbers in the list to compute the sum, task2 is
reordering that very same list. That’s somewhat like trying to read a book while somebody else
flips the pages: you’d be reading some well-mangled sentences! Graphically, this can be
illustrated as shown in figure 1.1.

Figure 1.1. Modifying data in place can give concurrent threads an incorrect view of the data

(4)

What if we use LINQ’s OrderBy method, instead of sorting the list in place?

Action task3 = () => WriteLine(nums.OrderBy(x => x).Sum());

Parallel.Invoke(task1, task3);

// prints: 0

// 0

As you can see, using LINQ’s functional implementation gives you a predictable result, even
when you execute the tasks in parallel. This is because task3 isn’t modifying the original list but
rather creating a completely new “view” of the data, which is sorted—task1 and task3 read from
the original list concurrently, but concurrent reads don’t cause any inconsistencies, as shown in
figure 1.2.

Figure 1.2. The functional approach: creating a new, modified version of the original structure

(5)

This simple example illustrates a wider truth: when developers write an application in the
imperative style (explicitly mutating the program state) and later introduce concurrency (due to
new requirements, or a need to improve performance), they inevitably face a lot of work and
potentially some difficult bugs. When a program is written in a functional style from the outset,
concurrency can often be added for free, or with substantially less effort. We’ll discuss state
mutation and concurrency more in chapters 2 and 9. For now, let’s go back to our overview of
FP.

Although most people will agree that treating functions as first-class values and avoiding state
mutation are fundamental tenets of FP, their application gives rise to a series of practices and
techniques, so it’s debatable which techniques should be considered essential and included in a
book like this.

I encourage you to take a pragmatic approach to the subject and try to understand FP as a set of
tools that you can use to address your programming tasks. As you learn these techniques, you’ll
start to look at problems from a different perspective: you’ll start to think functionally.

Now that we have a working definition of FP, let’s look at the C# language itself, and at its
support for FP techniques.

Functional vs. object-oriented?

I’m often asked to compare and contrast FP with object-oriented programming (OOP). This isn’t
simple, mainly because there are many incorrect assumptions about what OOP should look like.

In theory, the fundamental principles of OOP (encapsulation, data abstraction, and so on) are
orthogonal to the principles of FP, so there’s no reason why the two paradigms can’t be
combined.

(6)

In practice, however, most object-oriented (OO) developers heavily rely on the imperative style
in their method implementations, mutating state in place and using explicit control flow: they use
OO design in the large, and imperative programming in the small. So the real question is that of
imperative vs. functional programming, and I’ll summarize the benefits of FP at the end of this
chapter.

Another question that often arises is how FP differs from OOP in terms of structuring a large,
complex application. The difficult art of structuring a complex application relies on several
principles:

Modularity (dividing software into reusable components)
Separation of concerns (each component should only do one thing)
Layering (high-level components can depend on low-level components, but not vice versa)
Loose coupling (changes to a component shouldn’t affect components that depend on it)

These principles are generally valid, regardless of whether the component in question is a
function, a class, or an application.

They’re also in no way specific to OOP, so the same principles can be used to structure an
application written in the functional style—the difference will be in what the components are,
and what APIs they expose.

In practice, the functional emphasis on pure functions (which we’ll discuss in chapter 2) and
composability (chapter 5) make it significantly easier to achieve some of these design goals.[2]

2

For a more thorough discussion on why imperatively flavored OOP is a cause of, rather
than a solution to, program complexity, see Out of the Tar Pit by Ben Moseley and Peter
Marks, 2006 (https://github.com/papers-we-love/papers-we-love/raw/master/design/out-of-
the-tar-pit.pdf).

(7)

https://github.com/papers-we-love/papers-we-love/raw/master/design/out-of-the-tar-pit.pdf

1.2. How functional a language is C#?

Functions are indeed first-class values in C#, as demonstrated in the previous listings. In fact, C#
had support for functions as first-class values from the earliest version of the language through
the Delegate type, and the subsequent introduction of lambda expressions made the syntactic
support even better—we’ll review these language features in the next section.

There are some quirks and limitations, such as when it comes to type inference; we’ll discuss
these in chapter 8. But overall, the support for functions as first-class values is pretty good.

As for supporting a programming model that avoids in-place updates, the fundamental
requirement in this area is that a language have garbage collection. Because you create modified
versions, rather than updating existing values in place, you want old versions to be garbage
collected as needed. Again, C# satisfies this requirement.

Ideally, the language should also discourage in-place updates. This is C#’s greatest shortcoming:
everything is mutable by default, and the programmer has to put in a substantial amount of effort
to achieve immutability. Fields and variables must explicitly be marked readonly to prevent
mutation. (Compare this to F#, where variables are immutable by default and must explicitly be
marked mutable to allow mutation.)

What about types? There are a few immutable types in the framework, such as string and
DateTime, but language support for user-defined immutable types is poor (although, as you’ll see
next, it has improved in C# 6 and is likely to improve further in future versions). Finally,
collections in the framework are mutable, but a solid library of immutable collections is
available.

In summary, C# has very good support for some functional techniques, but not others. In its
evolution, it has improved, and it will continue to improve its support for functional techniques.
In this book, you’ll learn which features can be harnessed, and also how to work around its
shortcomings.

Next we’ll review some language features from past, present, and upcoming versions of C# that
are particularly relevant to FP.

1.2.1. The functional nature of LINQ

When C# 3 was released, along with version 3.5 of the .NET Framework, it included a host of
features inspired by functional languages, including the LINQ library (System.Linq) and some
new language features enabling or enhancing what you could do with LINQ, such as extension
methods and expression trees.

LINQ is indeed a functional library—as you probably noticed, I used LINQ earlier to illustrate
both tenets of FP—and the functional nature of LINQ will become even more apparent as you
progress through this book.

LINQ offers implementations for many common operations on lists (or, more generally, on
“sequences,” as instances of IEnumerable should technically be called), the most common of
which are mapping, sorting, and filtering (see the “Common operations on sequences” sidebar).
Here’s an example combining all three:

(8)

Enumerable.Range(1, 100).

 Where(i => i % 20 == 0).

 OrderBy(i => -i).

 Select(i => $"{i}%")

// => ["100%", "80%", "60%", "40%", "20%"]

Notice how Where, OrderBy, and Select all take functions as arguments and don’t mutate the given
IEnumerable, but return a new IEnumerable instead, illustrating both tenets of FP you saw earlier.

LINQ facilitates querying not only objects in memory (LINQ to Objects), but various other data
sources, like SQL tables and XML data. C# programmers have embraced LINQ as the standard
toolset for working with lists and relational data (accounting for a substantial amount of a typical
codebase). On the up side, this means that you’ll already have some sense of what a functional
library’s API feels like.

On the other hand, when working with other types, C# programmers generally stick to the
imperative style of using flow-control statements to express the program’s intended behavior. As
a result, most C# codebases I’ve seen are a patchwork of functional style (when working with
IEnumerables and IQueryables) and imperative style (everything else).

What this means is that although C# programmers are aware of the benefits of using a functional
library such as LINQ, they haven’t had enough exposure to the design principles behind LINQ to
leverage those techniques in their own designs. That’s something this book aims to address.

Common operations on sequences

The LINQ library contains many methods for performing common operations on sequences, such
as the following:

Mapping— Given a sequence and a function, mapping yields a new sequence with the
elements obtained by applying the given function to each element in the given sequence
(in LINQ, this is done with the Select method).
Enumerable.Range(1, 3).Select(i => i * 3) // => [3, 6, 9]

Filtering— Given a sequence and a predicate, filtering yields a new sequence consisting
of the elements from the given sequence that pass the predicate (in LINQ, Where).
Enumerable.Range(1, 10).Where(i => i % 3 == 0) // => [3, 6, 9]

Sorting— Given a sequence and a key-selector function, sorting yields a new sequence
ordered according to the key (in LINQ, OrderBy and OrderByDescending).
Enumerable.Range(1, 5).OrderBy(i => -i) // => [5, 4, 3, 2, 1]

1.2.2. Functional features in C# 6 and C# 7

C# 6 and C# 7 aren’t as revolutionary as C# 3, but they include many smaller language features
that, taken together, provide a much better experience and more idiomatic syntax for coding
functionally.

Note

(9)

Most features introduced in C# 6 and C# 7 offer better syntax, not new functionality. If you’re
using an older version of C#, you can still apply all of the techniques shown in this book (with a
bit of extra typing). However, these newer features significantly improve readability, making
programming in a functional style more attractive.

You can see these features in action in the following listing.

Listing 1.4. C# 6 and C# 7 features relevant for FP

Importing static members with using static

The using static statement in C# 6 allows you to import the static members of a class (in this
example, the System.Math class). As a result, in this example you can invoke the PI and Pow
members of Math without further qualification:

using static System.Math;

public double Circumference

 => PI * 2 * Radius;

Why is this important? In FP, we prefer functions whose behavior relies only on their input
arguments because we can reason about and test these functions in isolation (contrast this with
instance methods, whose implementation typically interacts with instance variables). These
functions are implemented as static methods in C#, so a functional library in C# will consist
mainly of static methods.

using static allows you to more easily consume such libraries, and although overuse can lead to

(10)

namespace pollution, reasonable use can make for clean, readable code.

Easier immutable types with getter-only auto-properties

When you declare a getter-only auto-property, such as Radius, the compiler implicitly declares a
readonly backing field. As a result, these properties can only be assigned a value in the
constructor or inline:

public class Circle

{

 public Circle(double radius)

 => Radius = radius;

 public double Radius { get; }

}

Getter-only auto-properties facilitate the definition of immutable types, which you’ll see in more
detail in chapter 9. The Circle class demonstrates this: it only has one field (the backing field of
Radius), which is readonly, so once it’s created, a Circle can never change.

More concise functions with expression-bodied members

The Circumference property is declared with an expression body introduced with =>, rather than
with the usual statement body in {}:

public double Circumference

 => PI * 2 * Radius;

Notice how much more concise this is compared to the Area property!

In FP, we tend to write lots of simple functions, many of them one-liners, and then compose
them into more complex workflows. Expression-bodied methods allow you to do this with
minimal syntactic noise. This is particularly evident when you want to write a function that
returns a function—something you’ll do a lot in this book.

The expression-bodied syntax was introduced in C# 6 for methods and properties, and it was
generalized in C# 7 to also apply to constructors, destructors, getters, and setters.

Local functions

Writing lots of simple functions means that many functions are called from one location only. C#
7 allows you to make this explicit by declaring methods within the scope of a method; for
instance, the Square method is declared within the scope of the Area getter:

get

{

 double Square(double d) => Pow(d, 2);

 return PI * Square(Radius);

}

Better syntax for tuples

Better syntax for tuples is the most important feature of C# 7. It allows you to easily create and
consume tuples, and, most importantly, to assign meaningful names to their elements. For
example, the Stats property returns a tuple of type (double, double), and specifies meaningful

(11)

names by which its elements can be accessed:

public (double Circumference, double Area) Stats

 => (Circumference, Area);

Tuples are important in FP because of the tendency to break tasks down into very small
functions. You may end up with a data type whose only purpose is to capture the information
returned by one function, and that’s expected as input by another function. It’s impractical to
define dedicated types for such structures, which don’t correspond to meaningful domain
abstractions. That’s where tuples come in.

1.2.3. A more functional future for C#?

As I was writing the first draft of this chapter, in early 2016, development of C# 7 was in its
early days, and it was interesting to see that all the features for which the language team had
identified “strong interest” were features normally associated with functional languages. They
included the following:

Record types (boilerplate-free immutable types)
Algebraic data types (a powerful addition to the type system)
Pattern matching (similar to a switch statement that works on the shape of the data, such as
its type, rather than just the values)
Better syntax for tuples

On one hand, it was disappointing that only the last item could be delivered. C# 7 also includes a
limited implementation of pattern matching, but it’s a far cry from the kind of pattern matching
available in functional languages, and it’s generally inadequate for the way we’d like to use
pattern matching when programming functionally (see section 10.2.4).

On the other hand, these features are still on the table for future versions, and work has been
done on the respective proposals. This means we’re likely to see record types and a more
complete implementation of pattern matching in future versions of C#. So C# is poised to
continue in its evolution as a multi-paradigm language with an increasingly strong functional
component.

This book will give you a good foundation for keeping up with the evolution of the language and
the industry. It’ll also give you a good understanding of the concepts and motivations behind
future versions of the language.

(12)

1.3. Thinking in functions

In this section, I’ll clarify what I mean by function. I’ll start with the mathematical use of the
word and then move on to the various language constructs that C# offers to represent functions.

1.3.1. Functions as maps

In mathematics, a function is a map between two sets, respectively called the domain and
codomain. That is, given an element from its domain, a function yields an element from its
codomain. That’s all there is—it doesn’t matter whether the mapping is based on some formula
or is completely arbitrary.

In this sense, a function is a completely abstract mathematical object, and the value that a
function yields is determined exclusively by its input. You’ll see that this isn’t always the case
with functions in programming.

For example, imagine a function mapping lowercase letters to their uppercase counterparts, as in
figure 1.3. In this case, the domain is the set {a, b, c, ...} and the codomain is the set {A, B, C,
...}. (Naturally, there are functions for which the domain and codomain are the same set; can
you think of an example?)

Figure 1.3. A mathematical function is a mapping between the elements of two sets.

How does this relate to programming functions? In statically typed languages like C#, the sets
(domain and codomain) are represented with types. For example, if you coded the function
above, you could use char to represent both the domain and the codomain. The type of your
function could then be written as

char → char

(13)

That is, the function maps chars to chars, or, equivalently, given a char, it yields a char.

The types for the domain and codomain constitute a function’s interface, also called its type, or
signature. You can think of this as a contract: a function signature declares that, given an element
from the domain, it will yield an element from the codomain.[3] This may sound pretty obvious,
but you’ll see in chapter 3 that in reality, violations of the signature contract abound.

3

Interfaces in the OO sense are an extension of this idea: a set of functions with their
respective input and output types, or, more precisely, methods, which are essentially
functions, that take this, the current instance, as an implicit argument.

Next, let’s look at ways to encode the functions themselves.

1.3.2. Representing functions in C#

There are several language constructs in C# that you can use to represent functions:

Methods
Delegates
Lambda expressions
Dictionaries

If you’re well-versed in these, skip to the next section; otherwise, here’s a quick refresher.

Methods

Methods are the most common and idiomatic representation for functions in C#. For example,
the System.Math class includes methods representing many common mathematical functions.
Methods can represent functions, but they also fit into the object-oriented paradigm—they can be
used to implement interfaces, they can be overloaded, and so on.

The constructs that really enable you to program in a functional style are delegates and lambda
expressions.

Delegates

Delegates are type-safe function pointers. Type-safe here means that a delegate is strongly typed:
the types of the input and output values of the function are known at compile time, and
consistency is enforced by the compiler.

Creating a delegate is a two-step process: you first declare the delegate type and then provide an
implementation. (This is analogous to writing an interface and then instantiating a class
implementing that interface.)

The first step is done by using the delegate keyword and providing the signature for the delegate.
For example, .NET includes the following definition of a Comparison<T> delegate.

Listing 1.5. Declaring a delegate

(14)

namespace System

{

 public delegate int Comparison<in T>(T x, T y);

}

As you can see, a Comparison<T> delegate can be given two T’s and will yield an int indicating
which is greater.

Once you have a delegate type, you can instantiate it by providing an implementation, like this.

Listing 1.6. Instantiating and using a delegate

As you can see, a delegate is just an object (in the technical sense) that represents an operation—
in this case, a comparison. Just like any other object, you can use a delegate as an argument for
another method, as in listing 1.6, so delegates are the language feature that makes functions first-
class values in C#.

The Func and Action delegates

The .NET framework includes a couple of delegate “families” that can represent pretty much any
function type:

Func<R> represents a function that takes no arguments and returns a result of type R.
Func<T1, R> represents a function that takes an argument of type T1 and returns a result of
type R.
Func<T1, T2, R> represents a function that takes a T1 and a T2 and returns an R.

And so on. There are delegates to represent functions of various “arities” (see the “Function
arity” sidebar).

Since the introduction of Func, it has become rare to use custom delegates. For example, instead
of declaring a custom delegate like this,

delegate Greeting Greeter(Person p);

you can just use the type:

Func<Person, Greeting>

The type of Greeter in the preceding example is equivalent to, or “compatible with,” Func<Person,
Greeting>. In both cases it’s a function that takes a Person and returns a Greeting.

There’s a similar delegate family to represent actions—functions that have no return value, such
as void methods:

Action represents an action with no input arguments.

(15)

Action<T1> represents an action with an input argument of type T1.
Action<T1, T2> and so on represent an action with several input arguments.

The evolution of .NET has been away from custom delegates, in favor of the more general Func
and Action delegates. For instance, take the representation of a predicate:[4]

4

A predicate is a function that, given a value (say, an integer), tells you whether it satisfies
some condition (say, whether it’s even).

In .NET 2, a Predicate<T> delegate was introduced, which is used, for instance, in the
FindAll method used to filter a List<T>.
In .NET 3, the Where method, also used for filtering but defined on the more general
IEnumerable<T>, takes not a Predicate<T> but simply a Func<T, bool>.

Both function types are equivalent. Using Func is recommended to avoid a proliferation of
delegate types that represent the same function signature, but there’s still something to be said in
favor of the expressiveness of custom delegates: Predicate<T>, in my view, conveys intent more
clearly than Func<T, bool> and is closer to the spoken language.

Function arity

Arity is a funny word that refers to the number of arguments that a function accepts:

A nullary function takes no arguments.
A unary function takes one argument.
A binary function takes two arguments.
A ternary function takes three arguments.

And so on. In reality, all functions can be viewed as being unary, because passing n arguments is
equivalent to passing an n-tuple as the only argument. For example, addition (like any other
binary arithmetic operation) is a function whose domain is the set of all pairs of numbers.

Lambda expressions

Lambda expressions, called lambdas for short, are used to declare a function inline. For example,
sorting a list of numbers alphabetically can be done with a lambda like so.

Listing 1.7. Declaring a function inline with a lambda

var list = Enumerable.Range(1, 10).Select(i => i * 3).ToList();

list // => [3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

list.Sort((l, r) => l.ToString().CompareTo(r.ToString()));

list // => [12, 15, 18, 21, 24, 27, 3, 30, 6, 9]

If your function is short and you don’t need to reuse it elsewhere, lambdas offer the most
attractive notation. Also notice that in the preceding example, the compiler not only infers the
types of x and y to be int, it also converts the lambda to the delegate type Comparison<int>
expected by the Sort method, given that the provided lambda is compatible with this type.

(16)

Just like methods, delegates and lambdas have access to the variables in the scope in which
they’re declared. This is particularly useful when leveraging closures in lambda expressions.[5]

Here’s an example.

5

A closure is the combination of the lambda expression itself along with the context in which
that lambda is declared (that is, all the variables available in the scope where the lambda
appears).

Listing 1.8. Lambdas have access to variables in the enclosing scope

In this example, Where expects a function that takes a DayOfWeek and returns a bool. In reality, the
function expressed by the lambda expression also uses the value of pattern, which is captured in
a closure, to calculate its result.

This is interesting. If you were to look at the function expressed by the lambda with a more
mathematical eye, you might say that it’s actually a binary function that takes a DayOfWeek and a
string (the pattern) as inputs, and yields a bool. As programmers, however, we’re usually mostly
concerned about the function signature, so you might be more likely to look at it as a unary
function from DayOfWeek to bool. Both perspectives are valid: the function must conform to its
unary signature, but it depends on two values to do its work.

Dictionaries

Dictionaries are fittingly also called maps (or hashtables); they’re data structures that provide a
very direct representation of a function. They literally contain the association of keys (elements
from the domain) to values (the corresponding elements from the codomain).

We normally think of dictionaries as data, so it’s enriching to change perspectives for a moment
and consider them as functions. Dictionaries are appropriate for representing functions that are
completely arbitrary, where the mappings can’t be computed but must be stored exhaustively.
For example, to map Boolean values to their names in French, you could write the following.

Listing 1.9. A function can be exhaustively represented with a dictionary

(17)

The fact that functions can be represented with dictionaries also makes it possible to optimize
computationally expensive functions by storing their computed results in a dictionary instead of
recomputing them every time.

For convenience, in the rest of the book, I’ll use the term function to indicate one of the C#
representations of a function, so keep in mind that this doesn’t quite match the mathematical
definition of the term. You’ll learn more about the differences between mathematical and
programming functions in chapter 2.

(18)

1.4. Higher-order functions

Now that you’ve got an understanding of what FP is and we’ve reviewed the functional features
of the language, it’s time to start exploring some concrete functional techniques. We’ll begin
with the most important benefit of functions as first-class values: it gives you the ability to define
higher-order functions (HOFs).

HOFs are functions that take other functions as inputs or return a function as output, or both. I’ll
assume that you’ve already used HOFs to some extent, such as with LINQ. We’ll use HOFs a lot
in this book, so this section should act as a refresher and will possibly introduce some use cases
for HOFs that you may be less familiar with. HOFs are fun, and most of the examples in this
section can be run in the REPL. Make sure you try a few variations of your own along the way.

1.4.1. Functions that depend on other functions

Some HOFs take other functions as arguments and invoke them in order to do their work,
somewhat like a company may subcontract some of its work to another company. You’ve seen
some examples of such HOFs earlier in this chapter: Sort (an instance method on List) and Where
(an extension method on IEnumerable).

List.Sort, when called with a Comparison delegate, is a method that says: “OK, I’ll sort myself, as
long as you tell me how to compare any two elements that I contain.” Sort does the job of
sorting, but the caller can decide what logic to use for comparing.

Similarly, Where does the job of filtering, and the caller decides what logic determines whether an
element should be included. You can represent the type of Where graphically, as shown in figure
1.4.

Figure 1.4. Where takes a predicate function as input.

Let’s look at an idealized implementation of Where.[6]

6

This implementation is functionally correct, but it lacks the error checking and
optimizations in the LINQ implementation.

Listing 1.10. Where: a typical HOF that iteratively applies the given predicate

(19)

The Where method is responsible for the sorting logic, and the caller provides the predicate,
which is the criterion based on which the IEnumerable should be filtered.

As you can see, HOFs can help with the separation of concerns in cases where logic can’t
otherwise be easily separated. Where and Sort are examples of iterated applications—the HOF
will apply the given function repeatedly for every element in the collection.

One very crude way of looking at this is that you’re passing as the argument a function whose
code will ultimately be executed inside the body of a loop within the HOF—something you
couldn’t do by only passing static data. The general scheme is shown in figure 1.5.

Figure 1.5. A HOF that iteratively applies the function given as an argument

Optional execution is another good candidate for HOFs. This is useful when you want to invoke
a given function only in certain conditions, as illustrated in figure 1.6.

Figure 1.6. A HOF that conditionally applies the function given as an argument

(20)

For example, imagine a method that looks up an element from the cache. A delegate can be
provided and can be invoked in case of a cache miss.

Listing 1.11. A HOF that optionally invokes the given function

class Cache<T> where T : class

{

 public T Get(Guid id) => //...

 public T Get(Guid id, Func<T> onMiss)

 => Get(id) ?? onMiss();

}

The logic in onMiss could involve an expensive operation such as a database call, so you wouldn’t
want this to be executed unnecessarily.

The preceding examples illustrate HOFs that take a function as input (often referred to as a
callback or a continuation) and use it to perform a task or to compute a value.[7] This is perhaps
the most common pattern for HOFs, and it’s sometimes referred to as inversion of control: the
caller of the HOF decides what to do by supplying a function, and the callee decides when to do
it by invoking the given function.

7

This is perhaps the most common pattern for HOFs, and it’s sometimes referred to as
inversion of control: the caller of the HOF decides what to do by supplying a function, and
the function decides when to do it by invoking the given function.

Let’s look at some other scenarios in which HOFs come in handy.

1.4.2. Adapter functions

Some HOFs don’t apply the given function at all, but rather return a new function, somehow
related to the function given as an argument. For example, say you have a function that performs
integer division:

Func<int, int, int> divide = (x, y) => x / y;

divide(10, 2) // => 5

You want to change the order of the arguments so that the divisor comes first. This could be seen
as a particular case of a more general problem: changing the order of the arguments.

You can write a generic HOF that modifies any binary function by swapping the order of its
arguments:

static Func<T2, T1, R> SwapArgs<T1, T2, R>(this Func<T1, T2, R> f)

 => (t2, t1) => f(t1, t2);

Technically, it would be more correct to say that SwapArgs returns a new function that invokes the
given function with the arguments in the reverse order. But on an intuitive level, I find it easier to
think that I’m getting back a modified version of the original function.

You can now modify the original division function by applying SwapArgs:

var divideBy = divide.SwapArgs();

divideBy(2, 10) // => 5

(21)

Playing with this sort of HOF leads to the interesting idea that functions aren’t set in stone: if you
don’t like the interface of a function, you can call it via another function that provides an
interface that better suits your needs. That’s why I call these adapter functions.[8]

8

The well-known adapter pattern in OOP can be seen as applying the idea of adapter
functions to an object’s interface.

1.4.3. Functions that create other functions

Sometimes you’ll write functions whose primary purpose is to create other functions—you can
think of them as function factories. The following example uses a lambda to filter a sequence of
numbers, keeping only those divisible by 2:

var range = Enumerable.Range(1, 20);

range.Where(i => i % 2 == 0)

// => [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

What if you wanted something more general, like being able to filter for numbers divisible by
any number, n? You could define a function that takes n and yields a suitable predicate that will
evaluate whether any given number is divisible by n:

Func<int, bool> isMod(int n) => i => i % n == 0;

We haven’t looked at a HOF like this before: it takes some static data and returns a function.
Let’s see how you can use it:

using static System.Linq.Enumerable;

Range(1, 20).Where(isMod(2)) // => [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Range(1, 20).Where(isMod(3)) // => [3, 6, 9, 12, 15, 18]

Notice how you’ve gained not only in generality, but also in readability! In this example, you’re
using the isMod HOF to produce a function, and then you’re feeding it as input to another HOF,
Where, as shown in figure 1.7.

Figure 1.7. A HOF that produces a function that’s given as input to another HOF

You’ll see many more uses of HOFs in the book. Eventually you’ll look at them as regular
functions, forgetting that they’re higher order. Let’s now look at how they can be used in a
scenario closer to everyday development.

(22)

1.5. Using HOFs to avoid duplication

Another common use case for HOFs is to encapsulate setup and teardown operations. For
example, interacting with a database requires some setup to acquire and open a connection, and
some cleaning up after the interaction to close the connection and return it to the underlying
connection pool. In code, it looks like the following.

Listing 1.12. Connecting to a DB requires some setup and teardown

The setup and teardown are always identical, regardless of whether you’re reading or writing to
the database, or performing one or many actions. The preceding code is usually written with a
using block, like this:

using (var conn = new SqlConnection(connString))

{

 conn.Open();

 // interact with the database...

}

This is both shorter and better,[9] but it’s still essentially the same. Consider the following
example of a simple DbLogger class with a couple of methods that interact with the database: Log
inserts a given log message, and GetLogs retrieves all logs since a given date.

9

It’s shorter because Dispose will be called as you exit the using block, and it will in turn call
Close; it’s better because the interaction will be wrapped in a try/finally, so that the
connection will be disposed even if an exception is thrown in the body of the using block.

Listing 1.13. Duplication of setup/teardown logic

(23)

Notice that the two methods have some duplication, namely the setup and teardown logic. Can
we get rid of the duplication?

The specifics of the interaction with the database are irrelevant for this discussion, but if you’re
interested, the code uses the Dapper library (documented on GitHub:
https://github.com/StackExchange/dapper-dot-net), which is a thin layer on top of ADO.NET
allowing you to interact with the database through a very simple API:

Query queries the database and returns the deserialized LogMessages.
Execute runs the stored procedure and returns the number of affected rows (which we’re
disregarding).

Both methods are defined as extension methods on the connection. More importantly, notice how
in both cases, the database interaction depends on the acquired connection and returns some data.
This will allow you to represent the database interaction as a function from IDbConnection to
“something.”

Asynchronous I/O operations

In a real-world scenario, I’d recommend you always perform I/O operations asynchronously (so,
in this example, GetLogs should really call QueryAsync and return a Task<IEnumerable<LogMessage>>).
But asynchrony adds a level of complexity that’s not helpful while you’re trying to learn the
already challenging ideas of FP. For pedagogical purposes, I’ll wait until chapter 13 to discuss
asynchrony.

(24)

https://github.com/StackExchange/dapper-dot-net

As you can see, Dapper exposes a pleasant API, and it will even open the connection if necessary.
But you’re still required to create the connection, and you should dispose it as soon as possible,
once you’re done with it. As a result, the meat of your database calls ends up sandwiched
between identical pieces of code that perform setup and teardown. Let’s look at how you can
avoid this duplication by extracting the setup and teardown logic into a HOF.

1.5.1. Encapsulating setup and teardown into a HOF

You’re looking to write a function that performs setup and teardown and that’s parameterized on
what to do in between. This is a perfect scenario for a HOF, because you can represent the logic
in between with a function.[10] Graphically, it looks like figure 1.8.

10

For this reason, you may hear this pattern inelegantly called “hole in the middle.”

Figure 1.8. A HOF that wraps a given function between setup and teardown logic

Because connection setup and teardown are much more general than DbLogger, they can be
extracted to a new ConnectionHelper class.

Listing 1.14. Encapsulating setup and teardown of the database connection into a HOF

(25)

The Connect function performs the setup and teardown, and it’s parameterized by what it should
do in between. The signature of the body is interesting; it takes an IDbConnection (through which
it will interact with the database), and returns a generic object R. In the use cases we’ve seen, R
will be IEnumerable<LogMessage> in the case of the query and int in the case of the insert. You can
now use the Connect function in DbLogger as follows:

using Dapper;

using static ConnectionHelper;

public class DbLogger

{

 string connString;

 public void Log(LogMessage message)

 => Connect(connString, c => c.Execute("sp_create_log"

 , message, commandType: CommandType.StoredProcedure));

 public IEnumerable<LogMessage> GetLogs(DateTime since)

 => Connect(connString, c => c.Query<LogMessage>(@"SELECT *

 FROM [Logs] WHERE [Timestamp] > @since", new {since = since}));

}

You got rid of the duplication in DbLogger, and DbLogger no longer needs to know the details about
creating, opening, or disposing of the connection.

1.5.2. Turning the using statement into a HOF

The previous result is satisfactory. But to take the idea of HOFs a bit further, let’s be a bit more
radical. Isn’t the using statement itself an example of setup/teardown? After all, a using block
always does the following:

Setup— Acquires an IDisposable resource by evaluating a given declaration or expression
Body— Executes what’s inside the block
Teardown— Exits the block, causing Dispose to be called on the object acquired in the
setup

So...Yes, it is! At least sort of. The setup isn’t always the same, so it too needs to be
parameterized. We can then write a more generic setup/teardown HOF that performs the using
ceremony.

This is the kind of widely reusable function that belongs in a library. Throughout the book, I’ll
show you many such reusable constructs that have gone into my LaYumba.Functional library,
enabling a better experience when coding functionally.

Listing 1.15. A HOF that can be used instead of the using statement

using System;

(26)

namespace LaYumba.Functional

{

 public static class F

 {

 public static R Using<TDisp, R>(TDisp disposable

 , Func<TDisp, R> f) where TDisp : IDisposable

 {

 using (disposable) return f(disposable);

 }

 }

}

The preceding listing defines a class called F that will contain the core functions of our functional
library. The idea is that these functions should be made available without qualification with using
static, as shown in the next code sample.

This Using function takes two arguments: the first is the disposable resource, and the second is
the function to be executed before the resource is disposed. With this in place, you can rewrite
the Connect function more concisely:

using static LaYumba.Functional.F;

public static class ConnectionHelper

{

 public static R Connect<R>(string connStr, Func<IDbConnection, R> f)

 => Using(new SqlConnection(connStr)

 , conn => { conn.Open(); return f(conn); });

}

The using static on the first line enables you to invoke the Using function as a sort of global
replacement for the using statement. Notice that unlike the using statement, calling the Using
function is an expression.[11] This has a couple of benefits:

11

Here’s a quick refresher on the difference: expressions return a value; statements don’t.

It allows you to use the more compact expression-bodied method syntax.
An expression has a value, so the Using function can be composed with other functions.

We’ll dig deeper into the ideas of composition and statements vs. expressions in section 5.5.1.

1.5.3. Tradeoffs of HOFs

Let’s look at what you’ve achieved by comparing the initial and the refactored versions of one of
the methods in DbLogger:

// initial implementation

public void Log(LogMessage msg)

{

 using (var conn = new SqlConnection(connString))

 {

 int affectedRows = conn.Execute("sp_create_log"

 , msg, commandType: CommandType.StoredProcedure);

 }

}

// refactored implementation

public void Log(LogMessage message)

 => Connect(connString, c => c.Execute("sp_create_log"

 , message, commandType: CommandType.StoredProcedure));

(27)

This is a good illustration of the benefits you can get from using HOFs that take a function as an
argument:

Conciseness— The new version is obviously more concise. Generally speaking, the more
intricate the setup/teardown and the more widely it’s required, the more benefit you get by
abstracting it into a HOF.
Avoid duplication— The whole setup/teardown logic is now performed in a single place.
Separation of concerns— You’ve managed to isolate connection management into the
ConnectionHelper class, so DbLogger need only concern itself with logging-specific logic.

Let’s look at how the call stack has changed. Whereas in the original implementation the call to
Execute happened on the stack frame of Log, in the new implementation they’re four stack frames
apart (see figure 1.9).

Figure 1.9. HOFs call back into the calling function.

When Log executes, the code calls Connect, passing it the callback function to invoke when the
connection is ready. Connect in turn repackages the callback into a new callback, and passes it to
Using.

So, HOFs also have some drawbacks:

You’ve increased stack use. There’s a performance impact, but it’s negligible.
Debugging the application will be a bit more complex because of the callbacks.

Overall, the improvements made to DbLogger make it a worthy tradeoff.

You probably agree by now that HOFs are very powerful tools, although overuse can make it
difficult to understand what the code is doing. Use HOFs when appropriate, but be mindful of

(28)

readability: use short lambdas, clear naming, and meaningful indentation.

(29)

1.6. Benefits of functional programming

The previous section demonstrated how you can use HOFs to avoid duplication and achieve
better separation of concerns. Indeed, one of the advantages of FP is its conciseness: you can
achieve the same results with fewer lines of code. Multiply that by the tens of thousands of lines
of code in a typical application, and conciseness also has a positive effect on the maintainability
of the application.

There are many more benefits to be reaped by applying the functional techniques you’ll learn in
this book, and they roughly fall into three categories:

Cleaner code— Apart from the previously mentioned conciseness, FP leads to more
expressive, more readable, and more easily testable code. Clean code is not just a
developer’s intellectual pleasure, but it also leads to huge economic benefits for the
business through reduced maintenance costs.
Better support for concurrency— Several factors, from multi-core CPUs to distributed
systems, bring a high degree of concurrency to your applications. Concurrency is
traditionally associated with difficult problems such as deadlocks, lost updates, and more;
FP offers techniques that prevent these problems from occurring. You’ll see an
introductory example in chapter 2 and more advanced examples toward the end of the
book.
A multi-paradigm approach— They say that if the only tool you have is a hammer, every
problem will look like a nail. Conversely, the more angles from which you can view a
given problem, the more likely it is that you’ll find an optimal solution. If you’re already
proficient in OOP, learning a different paradigm such as FP will inevitably give you a
richer perspective. When faced with a problem, you’ll be able to consider several
approaches and pick the most effective.

Exercises

I recommend you take the time to do the the exercises and come up with a few of your own
along the way. The code samples repository on GitHub (https://github.com/la-yumba/functional-
csharp-code) includes placeholders so that you can write, compile, and run your code with
minimal setup effort. It also includes solutions that you can check your results against:

1. Browse the methods of System.Linq.Enumerable (https://docs.microsoft.com/en-
us/dotnet/api/system.linq.enumerable). Which are HOFs? Which do you think imply
iterated application of the given function?

2. Write a function that negates a given predicate: whenever the given predicate evaluates to
true, the resulting function evaluates to false, and vice versa.

3. Write a method that uses quicksort to sort a List<int> (return a new list, rather than sorting
it in place).

4. Generalize the previous implementation to take a List<T>, and additionally a Comparison<T>
delegate.

5. In this chapter, you’ve seen a Using function that takes an IDisposable and a function of
type Func<TDisp, R>. Write an overload of Using that takes a Func<IDisposable> as the first
parameter, instead of the IDisposable. (This can be used to avoid warnings raised by some
code analysis tools about instantiating an IDisposable and not disposing it.)

(30)

https://github.com/la-yumba/functional-csharp-code
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable

Summary

FP is a powerful paradigm that can help you make your code more concise, maintainable,
expressive, robust, testable, and concurrency-friendly.
FP differs from OOP by focusing on functions, rather than objects, and on data
transformations rather than state mutation.
FP can be seen as a collection of techniques that are based on two fundamental tenets:
Functions are first-class values
In-place updates should be avoided
Functions in C# can be represented with methods, delegates, and lambdas.
FP leverages higher-order functions (functions that take other functions as input or output);
hence the necessity for the language to have functions as first-class values.

(31)

Chapter 2. Why function purity matters
This chapter covers

What makes a function pure or impure
Why purity matters in concurrent scenarios
How purity relates to testability
Reducing the impure footprint of your code

The initial name for this chapter was “The irresistible appeal of purity.” But if it was so
irresistible, we’d have more functional programmers, right? Functional programmers, you see,
are suckers for pure functions—functions with no side effects. As you’ll see in this chapter, pure
functions have some very desirable properties.

Unfortunately, the fascination with pure functions and what you can do with them is partly why
FP as a discipline has become disconnected from the industry. As you’ll soon realize, there’s
very little purity in most real-world applications. And yet, purity is still relevant in the real world,
as I hope to show in this chapter.

We’ll start by looking at what makes a function pure (or impure), and then you’ll see how purity
affects a program’s testability and even correctness, especially in concurrent scenarios. I hope
that by the end of the chapter you’ll find purity, if not “irresistible,” at least “definitely worth
keeping in mind.”

(32)

2.1. What is function purity?

In chapter 1 you saw that mathematical functions are completely abstract entities. Although some
programming functions are close representations of mathematical functions, this is often not the
case. You often want a function to write something to the screen, to process a file, or to interact
with another system. In short, you often want a function to do something—to have a side effect.
Mathematical functions do nothing of the sort; they only return a value.

There’s a second important difference: mathematical functions exist in a vacuum, so that their
results are determined strictly by their arguments. The programming constructs we use to
represent functions, on the other hand, all have access to a “context”: an instance method has
access to instance fields, a lambda has access to variables closed over, and many functions access
things that are completely outside the scope of the program, such as the system clock, a database,
or a remote service.

That this context exists, that its limits aren’t necessarily clearly demarcated, and that it may
consist of things that change outside of the program’s control mean that the behavior of functions
in programming is substantially more complex to analyze than functions in mathematics. This
has led to a distinction between pure and impure functions.

2.1.1. Purity and side effects

Pure functions closely resemble mathematical functions: they do nothing other than compute an
output value based on their input values. Table 2.1 contrasts pure and impure functions.

Table 2.1. Requirements of pure functions

Pure functions Impure functions

The output depends entirely on the input
arguments.

Factors other than input arguments may affect
the output.

Cause no side effects. May cause side effects.

To clarify this definition, we must define exactly what a side effect is. A function is said to have
side effects if it does any of the following:

Mutates global state—“Global” here means any state that’s visible outside of the
function’s scope. For example, a private instance field is considered global because it’s
visible from all methods within the class.
Mutates its input arguments
Throws exceptions[1]

1

Some will argue that a function can be considered pure despite throwing exceptions.
However, in throwing exceptions it will cause indeterminism to appear in code that
makes some decisions based on exception-handling, or in the absence of exception
handling, in the side effect of the program crashing.

(33)

Performs any I/O operation— This includes any interaction between the program and the
external world, including reading from or writing to the console, the filesystem, or a
database, and interacting with any process outside the application’s boundary.

In summary, pure functions have no side effects, and their output is solely determined by their
inputs.

The deterministic nature of pure functions (that is, the fact that they always return the same
output for the same input) has some interesting consequences. Pure functions are easy to test and
to reason about.[2] Furthermore, the fact that outputs only depend on inputs means that the order
of evaluation isn’t important. Whether you evaluate the result of a function now or later, the
result will not change. This means that the parts of your program that consist entirely of pure
functions can be optimized in a number of ways:

2

More theoretically inclined authors show how you can reason about pure functions
algebraically to prove the correctness of your program; see, for example, Programming in
Haskell, second edition, by Graham Hutton (Cambridge University Press, 2016).

Parallelization— Different threads carry out tasks in parallel
Lazy evaluation— Only evaluate values as needed
Memoization— Cache the result of a function so it’s only computed once

On the other hand, using these techniques with impure functions can lead to rather nasty bugs.
For these reasons, FP advocates that pure functions should be preferred whenever possible.

2.1.2. Strategies for managing side effects

Ok, let’s aim to use pure functions whenever possible. But is it always possible? Is it ever
possible? Well, if you look at the list of things considered side effects, it’s a pretty mixed bag, so
the strategies for managing side effects depend on the types of side effects in question.

Isolate I/O effects

Let’s start with I/O, which is always considered a side effect. First, here are a few examples that
will clarify why functions that perform I/O can never be pure:

A function that takes a URL and returns the resource at that URL will yield a different
result any time the remote resource changes, or it may throw an error if the connection is
unavailable.
A function that takes a file path and contents to be written to a file may throw an error if
the directory doesn’t exist, or if the process hosting the program lacks write permissions.
A function that returns the current time from the system clock will return a different result
at any instant.

As you can see, any dependency on the external world gets in the way of function purity because
the state of the world affects the function’s return value. On the other hand, if your program is to
do anything of use, there’s no escaping the fact that some I/O is required. Even a purely
mathematical program that just performs a computation must perform some I/O to communicate
its result. So some of your code will have to be impure.

(34)

What you can do is isolate the pure, computational parts of your programs from the I/O. In this
way, you minimize the footprint of I/O and reap the benefits of purity for the pure part of the
program. Consider the following code:

WriteLine("Enter your name:");

var name = ReadLine();

WriteLine($"Hello {name}");

This trivial program (assume it’s wrapped in a Main method) mixes I/O with logic that could be
extracted in a pure function:

static string GreetingFor(string name) => $"Hello {name}";

There are some real-world programs in which separating logic from I/O is relatively simple. For
example, take a document-format converter like Pandoc, which can be used to convert a file
from, say, Markdown to PDF. When you execute Pandoc, it will perform the steps shown in
figure 2.1.

Figure 2.1. A program where I/O can easily be isolated

The computational part of the program, which performs the format conversion, can be made
entirely of pure functions. The impure functions that perform I/O can call the pure functions that
perform the translation, but the functions that perform the translation can’t call any function that
performs I/O, or they would also become impure.

LOB applications have a much more complex structure in terms of I/O, so isolating the purely
computational parts of the program from I/O is quite a challenge. I’ll show you some possible
approaches in this chapter and throughout the book.

Avoid mutating arguments

Another kind of side effect is the mutation of function arguments. Mutating function arguments
is a bad idea in any programming paradigm, but I’ve repeatedly stumbled on implementations
that do something like this:

decimal RecomputeTotal(Order order, List<OrderLine> linesToDelete)

{

 var result = 0m;

 foreach (var line in order.OrderLines)

 if (line.Quantity == 0) linesToDelete.Add(line);

 else result += line.Product.Price * line.Quantity;

 return result;

}

This function is meant to be called when the quantity of items in an order is modified. It

(35)

recomputes the total value of the order and, as a side effect, adds to the linesTo-Delete list the
order lines whose quantity has been changed to zero.

The reason why this is such a terrible idea is that the behavior of the method is now tightly
coupled with that of the caller: the caller relies on the method to perform its side effect, and the
callee relies on the caller to initialize the list. As such, both methods must be aware of the
implementation details of the other, making it impossible to reason about the methods in
isolation.[3]

3

Furthermore, if you were to change the type of the mutated argument from a class to a
struct, you’d get a radically different behavior, because structs are passed by value.

This kind of side effect can easily be avoided by returning all the computed information to the
caller instead. For example, the preceding code can be refactored as follows:

(decimal, IEnumerable<OrderLine>) RecomputeTotal(Order order)

 => (order.OrderLines.Sum(l => l.Product.Price * l.Quantity)

 , order.OrderLines.Where(l => l.Quantity == 0));

Following this principle, you can always structure your code in such a way that functions never
mutate their input arguments. In fact, it would be ideal to enforce this by always using immutable
objects—objects that, once created, cannot be changed. We’ll discuss this in detail in chapter 10.

What about the remaining two kinds of side effects: mutating non-local state and throwing
exceptions? It turns out that it’s always possible to handle errors without relying on exceptions,
and it’s often possible to avoid state mutation. Indeed, big chunks of this book are devoted to
functional error handling and avoiding state mutation to allow you to achieve this.

By learning these techniques, you’ll be able to isolate or avoid side effects, and to harness the
benefits of pure functions.

(36)

2.2. Purity and concurrency

That’s quite enough theory for now; let’s look at some code that demonstrates pure and impure
functions in action. Imagine you want to format a list of strings as a numbered list; the casing
should be standardized, and each item should be preceded with a counter. To do this, you’ll
create a ListFormatter class that can be used as follows:

var shoppingList = new List<string> { "coffee beans", "BANANAS", "Dates" };

new ListFormatter()

 .Format(shoppingList)

 .ForEach(WriteLine);

// prints: 1. Coffee beans

// 2. Bananas

// 3. Dates

One possible implementation of the ListFormatter is shown in the following listing.

Listing 2.1. A list formatter combining pure and impure functions

There are a few things to point out with respect to purity:

ToSentenceCase is pure (its output is strictly determined by the input). Because its
computation only depends on the input parameter, it can be made static without any
problems.[4]

4

In many languages, you’d have functions like this as freestanding functions, but
methods in C# need to be inside a class, and it’s mostly a matter of taste where you
put your static functions.

PrependCounter increments the counter, so it’s impure. Because it depends on an instance
member—the counter—you can’t make it static.

(37)

In the Format method, you apply both functions to items in the list with Select, irrespective
of purity. This isn’t ideal, as you’ll soon learn. In fact, there would ideally be a rule that
Select should only be used with pure functions.

If the list you’re formatting was big enough, would it make sense to perform the string
manipulations in parallel? Could the runtime decide to do this as an optimization? We’ll tackle
these questions next.

2.2.1. Pure functions parallelize well

Given a big enough set of data to process, it’s usually advantageous to process it in parallel,
especially when the processing is CPU-intensive and the pieces of data can be processed
independently.

The problem is that pure and impure functions don’t parallelize equally well. I’ll illustrate this by
trying to parallelize our list formatting functions with ListFormatter.

Pure functions parallelize well and are generally immune to the issues that make concurrency
difficult. (For a refresher on concurrency and parallelism, see the sidebar on the meaning and
types of concurrency.)

Compare these two expressions:

list.Select(ToSentenceCase).ToList()

list.AsParallel().Select(ToSentenceCase).ToList()

The first expression uses the Select method defined on Enumerable to apply the pure function
ToSentenceCase to each element in the list. The second expression is very similar, but it uses
methods provided by Parallel LINQ (PLINQ).[5] AsParallel turns the list into a ParallelQuery. As
a result, Select resolves to the implementation defined on ParallelEnumerable, which will apply
ToSentenceCase to each item in the list, but now in parallel. The list will be split into chunks, and
several threads will be fired off to process each chunk. In both cases, ToList harvests the results
into a list.

5

PLINQ is an implementation of LINQ to Objects that works in parallel.

As you would expect, the two expressions yield the same results, but one does so sequentially
and the other in parallel. This is nice; with just one call to AsParallel, you get parallelization
almost for free.

Why “almost” for free? Why do you have to explicitly instruct the runtime to parallelize the
operation? Why can’t it just figure out that it’s a good idea to parallelize the operation, just like it
figures out when it’s a good time to run the garbage collector?

The answer is that the runtime doesn’t know enough about the function to make an informed
decision of whether parallelization might change the program flow. Because of their properties,
pure functions can always be applied in parallel, but the runtime doesn’t know about the purity of
the function being applied.

Meaning and types of concurrency

(38)

Concurrency is the general concept of having several things going on at the same time. More
formally, concurrency is when a program initiates a task before another one has completed, so
that different tasks are executed in overlapping time windows.

There are several scenarios in which concurrency can occur:

Asynchrony— This means that your program performs non-blocking operations. For
example, it can initiate a request for a remote resource via HTTP and then go on to do
some other task while it waits for the response to be received. It’s a bit like when you send
an email and then go on with your life without waiting for a response.
Parallelism— This means that your program leverages the hardware of multi-core
machines to execute tasks at the same time by breaking up work into tasks, each of which
is executed on a separate core. It’s a bit like singing in the shower: you’re actually doing
two things at exactly the same time.
Multithreading— This is a software implementation allowing different threads to be
executed concurrently. A multithreaded program appears to be doing several things at the
same time even when it’s running on a single-core machine. This is a bit like chatting with
different people through various IM windows; although you’re actually switching back
and forth, the net result is that you’re having multiple conversations at the same time.

Doing several things at the same time can really boost performance. It also means that the order
of execution isn’t guaranteed, so concurrency can be the source of difficult problems, most
notably when multiple tasks concurrently try to update some shared mutable state. (In later
chapters, you’ll see how FP addresses this by avoiding shared mutable state altogether.)

2.2.2. Parallelizing impure functions

Let’s see what happens if we naively apply parallelization with the impure PrependCounter
function:

list.Select(PrependCounter).ToList()

list.AsParallel().Select(PrependCounter).ToList()

Because PrependCounter increments the counter variable, the parallel version will have multiple
threads reading and updating the counter. As is well known, ++ is not an atomic operation, and
because there’s no locking in place, we’ll lose some of the updates and end up with an incorrect
result.

If you test this approach with a large enough input list, you’ll get a result like this:

Expected string length 20 but was 19. Strings differ at index 0.

Expected: "1000000. Item1000000"

But was: "956883. Item1000000"

-----------^

This will look pretty familiar if you have some multithreading experience. Because multiple
processes are reading and writing to the counter at the same time, some of the updates are lost.
You probably know that this could be fixed by using a lock or the Interlocked class when
incrementing the counter. But locking is an imperative construct that we’d rather avoid when
coding functionally.

Let’s summarize. Unlike pure functions, whose application can be parallelized by default, impure

(39)

functions don’t parallelize out of the box. And because parallel execution is nondeterministic,
you may get some cases in which your result is correct and others in which it isn’t (this is not the
sort of bug I like to face).

Being aware of whether your functions are pure or not may help you understand those issues.
Furthermore, if you develop with purity in mind, it will be easier to parallelize the execution if
you decide to do so.

2.2.3. Avoiding state mutation

One possible way to avoid the pitfalls of concurrent updates is to remove the problem at the
source: don’t use shared state to begin with. How this can be done will vary with each scenario,
but I’ll show you a solution for the current scenario that will enable us to format the list in
parallel.

Let’s go back to the drawing board and see if there’s a sequential solution that doesn’t involve
mutation. What if instead of updating a running counter, you generate a list of all the counter
values you need, and then pair items from the given list with items from the list of counters?

For the list of integers, you can use Range, a convenience method on Enumerable.

Listing 2.2. Generating a range of integers

Enumerable.Range(1, 3)

// => [1, 2, 3]

The operation of pairing two parallel lists is a common operation in FP, and it’s called Zip.
Here’s an example.

Listing 2.3. Combining elements from parallel lists with Zip

Enumerable.Zip(

 new[] {1, 2, 3},

 new[] {"ichi", "ni", "san"},

 (number, name) => $"In Japanese, {number} is: {name}")

// => ["In Japanese, 1 is: ichi",

// "In Japanese, 2 is: ni",

// "In Japanese, 3 is: san"]

Using Range and Zip, you can rewrite the list formatter as follows.

Listing 2.4. List formatter refactored to use pure functions only

using static System.Linq.Enumerable;

static class ListFormatter

{

 public static List<string> Format(List<string> list)

 {

 var left = list.Select(StringExt.ToSentenceCase);

 var right = Range(1, list.Count);

 var zipped = Zip(left, right, (s, i) => $"{i}. {s}");

 return zipped.ToList();

 }

}

Here you use the list, with ToSentenceCase applied to it, as the left side of Zip. The right side is

(40)

constructed with Range. The third argument to Zip is the pairing function: what to do with each
pair of items.

Zip can be used as an extension method, so you can write the Format method using a more fluent
syntax:

public static List<string> Format(List<string> list)

 => list

 .Select(StringExt.ToSentenceCase)

 .Zip(Range(1, list.Count), (s, i) => $"{i}. {s}")

 .ToList();

After this refactoring, Format is pure and can safely be made static. But what about making it
parallel? That’s a piece of cake, because PLINQ offers an implementation of Zip that works with
parallel queries. A parallel implementation of the list formatter would then look like this.

Listing 2.5. A pure implementation that executes in parallel

This is almost identical to the sequential version; there are only two differences. First, AsParallel
is used to turn the given list into a ParallelQuery so that everything after that is done in parallel.
Second, the change in using static has the effect that Range now refers to the implementation
defined on ParallelEnumerable (this returns a ParallelQuery, which is what the parallel version of
Zip expects). The rest is the same as the sequential version, and the parallel version of Format is
still a pure function.

In this case, ParallelEnumerable does all the heavy lifting, and you can easily resolve the problem
by reducing this specific scenario to the more common scenario of zipping two parallel
sequences—a scenario common enough that it’s addressed in the framework.

In this scenario it was possible to enable parallel execution by removing state updates altogether,
but this isn’t always the case, nor is it always this easy. But the ideas you’ve seen so far already
put you in a better position when tackling issues related to parallelism, and more generally
concurrency.

The case for static methods

When all variables required within a method are provided as input (or are statically available),
the method can be made static. This chapter contains several examples of refactoring instance
methods to static methods.

You may feel uneasy about this, especially if—like me—you’ve seen programs become difficult
to test and maintain because of the excessive use of static classes.

Static methods can cause problems if they do either of the following:

(41)

Act on mutable static fields— These are effectively the most global variables, and it’s well
known that maintainability suffers from the presence of global mutable variables.
Perform I/O— In this case, it’s testability that’s jeopardized. If method A depends on the
I/O behavior of static method B, it’s not possible to unit test A.

Note that both these cases imply an impure function. On the other hand, when a function is pure,
there’s no downside to making it static. As a general guideline,

Make pure functions static.
Avoid mutable static fields.
Avoid direct calls to static methods that perform I/O.

As you code more functionally, more of your functions will be pure, so potentially more of your
code will be in static classes without causing any problems related to the abuse of static classes.

(42)

2.3. Purity and testability

In the previous section, you saw the properties of pure functions in a concurrent scenario.
Because the side effect had to do with state mutation, you could remove the mutation, and the
resulting pure function could be run in parallel without problems.

Now we’ll look at the properties of pure functions in relation to unit testing, and in scenarios
where the side effect has to do with I/O. Unlike mutation, you can’t avoid side effects related to
I/O; whereas mutation is an implementation detail, I/O is usually a requirement.

You probably already have some knowledge about unit testing that can help you to understand
purity, because the two are strictly linked. Like the previous section, this section should also help
to dispel the notion that purity is only of theoretical interest—your manager may not care
whether you write pure functions, but he’s probably keen on good test coverage.

2.3.1. In practice: a validation scenario

I’ll start by presenting some code for a hypothetical online banking application for the Bank of
Codeland (BOC). A common feature in online banking is allowing users to make money
transfers, so we’ll start with that. Imagine that a customer can use aweb or mobile client to
request a transfer, as shown in figure 2.2. Before booking the transfer, the server will have to
validate this request.

Figure 2.2. Business scenario: validating a transfer request

Let’s assume that the user’s request to make a money transfer is represented by a MakeTransfer
command. A command is a simple data object that encapsulates details about an action to be
carried out:

public abstract class Command { }

public sealed class MakeTransfer : Command

{

 public Guid DebitedAccountId { get; set; }

 public string Beneficiary { get; set; }

 public string Iban { get; set; }

 public string Bic { get; set; }

 public decimal Amount { get; set; }

 public DateTime Date { get; set; }

}

Validation in this scenario can be quite complex, so for the purposes of this explanation we’ll
only look at the following validation:

The Date field, representing the date on which the transfer should be executed, should not

(43)

be past.
The BIC code, a standard identifier for the beneficiary’s bank, should be valid.

We’ll follow the single-responsibility principle and write one class for each particular validation.
Let’s draft a simple interface for all these validator classes:

public interface IValidator<T>

{

 bool IsValid(T t);

}

Now that we have our domain-specific abstractions in place, let’s start with a basic
implementation:

using System.Text.RegularExpressions;

public sealed class BicFormatValidator : IValidator<MakeTransfer>

{

 static readonly Regex regex = new Regex("^[A-Z]{6}[A-Z1-9]{5}$");

 public bool IsValid(MakeTransfer cmd)

 => regex.IsMatch(cmd.Bic);

}

public class DateNotPastValidator : IValidator<MakeTransfer>

{

 public bool IsValid(MakeTransfer cmd)

 => (DateTime.UtcNow.Date <= cmd.Date.Date);

}

That was fairly easy. Is the logic in BicFormatValidator pure? Yes, because there are no side
effects and the result of IsValid is deterministic. What about DateNotPastValidator? In this case,
the result of IsValid will depend on the current date, so, clearly, the answer is no! What kind of
side effect are we facing here? It’s I/O: DateTime.UtcNow queries the system clock, which is not in
the context of the program.

Functions that perform I/O are difficult to test. For example, the following test passes as I’m
writing this, but it will start to fail on the 13th of December, 2016:

[Test] public void WhenTransferDateIsFuture_ThenValidationPasses()

{

 var transfer = new MakeTransfer { Date = new DateTime(2016, 12, 12) };

 var validator = new DateNotPastValidator();

 var actual = validator.IsValid(transfer);

 Assert.AreEqual(true, actual);

}

Next, we’ll look at different ways to address this issue and make your unit tests predictable.

2.3.2. Bringing impure functions under test

The standard object-oriented (OO) technique for ensuring that unit tests behave consistently is to
abstract I/O operations in an interface, and to use a deterministic implementation in the tests. I’ll
call this the interface-based approach; it’s considered a best practice, but I’ve come to think of it
as an anti-pattern because of the amount of boilerplate it entails. If you’re already familiar with
this approach, you can skip to the next subsection.

In this approach, instead of calling DateTime.UtcNow directly, you abstract access to the system
clock like so:

(44)

You then refactor the date validator to consume this interface, instead of accessing the system
clock directly. The validator’s behavior now depends on the interface, of which an instance
should be injected (usually in the constructor), like so:

On trivial constructors

All that this newly introduced constructor does is store its input arguments in fields. Many
languages spare you such ceremony by having “primary constructors”—a feature we’ll hopefully
see in some future version of C#.

In order to concentrate on meaningful code, I’ll usually omit such trivial constructors in the rest
of the book. You should assume that class fields are always injected and set in the constructor,
unless they’re set inline.

Let’s look at the refactored IsValid method: is it a pure function? Well, the answer is, it depends!
It depends, of course, on the implementation of IDateTimeService that’s injected:

When running normally, you’ll compose your objects so that you get the “real” impure
implementation that checks the system clock.
When running unit tests, you’ll inject a “fake” pure implementation that does something
predictable, such as always returning the same DateTime, enabling you to write tests that are
repeatable.

With this approach, tests can be written in this form:

(45)

As you can see, there’s a strong link between testability and function purity: unit tests need to be
isolated (no I/O) and repeatable (always get the same result, given the same inputs). These
properties are guaranteed when you use pure functions.

Next, let’s look at the code and unit tests with a functional eye and see if there’s room for
improvement.

2.3.3. Why testing impure functions is hard

When you write unit tests, what are you testing? A unit, of course, but what’s a unit exactly?
Whatever unit you’re testing is a function or can be viewed as one.

If what you’re testing actually is a pure function, testing is easy: you just give it an input and
verify that the output is as expected, as illustrated in figure 2.3. If you use the standard Arrange
Act Assert (AAA) pattern in your unit tests,[6] and the unit you’re testing is a pure function, then
the arrange step consists of defining the input values, the act step is the function invocation, and
the assert step consists of checking that the output is as expected.

6

AAA is a ubiquitous pattern for structuring the code in unit tests. According to this pattern,
a test consists of three steps: arrange prepares any prerequisites, act performs the operation
being tested, and assert runs assertions against the obtained result.

Figure 2.3. Testing a pure function is easy.

If you do this for a representative set of input values, you can have confidence that the function
works as intended.

If, on the other hand, the unit you’re testing is an impure function, its behavior will depend not

(46)

only on its inputs, but possibly also on the state of the program (that is, any mutable state that’s
not local to the function under test) and the state of the world (anything outside the context of
your program). Furthermore, the function’s side effects may lead to a new state of the program
and the world. For example,

The date validator depends on the state of the world, specifically the current time.
A void-returning method that sends an email has no explicit output to assert against, but it
results in a new state of the world.
A method that sets a non-local variable results in a new state of the program.

As a result, you could view an impure function as a pure function that takes as input its
arguments, along with the current state of the program and the world, and returns its outputs,
along with a new state of the program and the world, as shown in figure 2.4.

Figure 2.4. An impure function from the perspective of testability

Another way to look at this is that an impure function has implicit inputs other than its
arguments, or implicit outputs other than its return value, or both.

How does this affect testing? Well, in the case of an impure function, the arrange stage must not
only provide the explicit inputs to the function under test but must additionally set up a
representation of the state of the program and the world. Similarly, the assert stage must not only
check the result, but also that the expected changes have occurred in the state of the program and
the world. This is summarized in table 2.2.

Table 2.2. Unit testing from a functional perspective

AAA pattern Functional thinking

Arrange Set up the (explicit and implicit) inputs to the function under test
Act Evaluate the function under test
Assert Verify the correctness of the (explicit and implicit) outputs

Again we should distinguish between different kinds of side effects with respect to testing:

The state of the world is managed by using mocks to create an artificial world in which the
test runs. It’s hard work, but the technique is well understood. This is how you can test
code that relies on I/O operations.
Setting the state of the program and checking that it’s updated correctly doesn’t require
mocks, but it makes for brittle tests and breaks encapsulation.

2.3.4. Parameterized unit tests

(47)

Unit tests can be parameterized, so that you can show that your tests pass for a variety of input
values. Parameterized tests tend to be more functional, because they make you think in terms of
inputs and outputs.

For example, you can test that the date-not-past validation works in a variety of cases as follows.

Listing 2.6. Parameterized tests allow you to check your code in a variety of situations

public class DateNotPastValidatorTest

{

 static DateTime presentDate = new DateTime(2016, 12, 12);

 private class FakeDateTimeService : IDateTimeService

 {

 public DateTime UtcNow => presentDate;

 }

 [TestCase(+1, ExpectedResult = true)]

 [TestCase(0, ExpectedResult = true)]

 [TestCase(-1, ExpectedResult = false)]

 public bool WhenTransferDateIsPast_ThenValidatorFails(int offset)

 {

 var sut = new DateNotPastValidator(new FakeDateTimeService());

 var cmd = new MakeTransfer { Date = presentDate.AddDays(offset) };

 return sut.IsValid(cmd);

 }

}

The preceding code uses NUnit’s TestCase attribute to effectively run three tests: a transfer
requested to take place today (December 12, 2016), yesterday, and tomorrow.[7]

7

XUnit has Theory and InlineData attributes that allow you to do the same thing. If you’re
using a testing framework that doesn’t support parameterized tests, I recommend you
consider changing.

Parameterized tests have the advantage that you can test a variety of scenarios just by tweaking
the parameter values. Should a client be able to request a transfer for a date that’s two years
away? If so, you can add a test for this with a single line:

[TestCase(730, ExpectedResult = true)]

Notice that the test method now is itself a function; it maps the given parameter values to an
output that NUnit can check. A parameterized test is essentially just an adapter for the function
under test. In this example, the test creates an artificial state of the world with hard-coded present
data, and it maps the test’s input parameter (the offset between the present date and the requested
transfer date) to a suitably populated MakeTransfer object, which is given as input to the function
under test.

I hope you’re gradually seeing how functional thinking can breathe a bit of fresh air into day-to-
day development tasks, such as writing unit tests.

2.3.5. Avoiding header interfaces

In the preceding sections, you saw the standard, interface-based way of bringing impure
functions under test with dependency injection and mocks. I showed this in practice with the date
and balance validators, and this approach can be used systematically by following these steps:

(48)

1. Define an interface (such as IDateTimeService) that abstracts the impure operations
consumed in the class under test.

2. Put the impure implementation (such as DateTime.UtcNow) in a class that implements that
interface (such as DefaultDateTimeService).

3. In the class under test, require the interface in the constructor, store it in a field, and
consume it as needed.

4. Introduce some bootstrapping logic (manually or with the help of a framework)[8] so that
the correct implementation will be injected whenever the class under test is instantiated.

8

Manually composing all classes in a complex application can become quite a chore.
To mitigate this, some frameworks allow you to declare what implementations to use
for any interface that’s required; these are called IoC containers, where IoC stands for
inversion of control.

5. Create and inject a fake implementation for the purposes of unit testing.

Unit tests are so valuable that developers gladly put up with all this work, even for something as
simple as DateTime.UtcNow.

One of the least desirable effects of using this approach systematically is the explosion in the
number of interfaces, because you must define an interface for every component that has an I/O
element. Most applications are currently developed with an interface for every service, even
when only one concrete implementation is envisaged. These are called “header interfaces”—
they’re not what interfaces were initially designed for (a common contract with several different
implementations), but they’re used across the board. You end up with more files, more
indirection, more assemblies, and code that’s difficult to navigate.

In this section I’ll show you much simpler alternatives.

Pushing the pure boundary outwards

Can we get rid of the whole problem and make everything pure? No. But sometimes we can push
the boundaries of pure code. For instance, what if you rewrote the date validator as follows?

Listing 2.7. Injecting a specific value, rather than an interface, makes IsValid pure

public class DateNotPastValidator : IValidator<MakeTransfer>

{

 private readonly DateTime today;

 public DateNotPastValidator(DateTime today)

 {

 this.today = today;

 }

 public bool IsValid(MakeTransfer cmd)

 => (today <= cmd.Date.Date);

}

Instead of injecting an interface, exposing some method you can invoke, inject a value. Now the
implementation of IsValid is pure (because today is not mutable).You’ve effectively pushed the
side effect of reading the current date outwards, to the code instantiating the validator.

(49)

Now whatever code instantiates DateNotPastValidator must know how to get the current time.
Furthermore, DateNotPastValidator must be short-lived. In this case, these constraints seem
reasonable: the validator can be instantiated on a per-request basis, and the instantiating code can
provide the time.

Requesting a value, rather than having a method or interface supply that value, is an easy win,
making more of your code pure and thus easily testable. This approach works well for
configuration and environment-specific settings. But things are rarely this easy, so let’s move on
to an example that’s closer to a typical scenario.

Injecting functions as dependencies

I earlier showed a simple validator that checks that the BIC code is in the correct format. In
practice, most online banking applications do better than that: they check that the BIC code
actually identifies an existing bank. To do this, you need a validator that can get a list of valid
codes and check that the list contains the code in the transfer command:

public sealed class BicExistsValidator : IValidator<MakeTransfer>

{

 readonly IEnumerable<string> validCodes;

 public bool IsValid(MakeTransfer cmd)

 => validCodes.Contains(cmd.Bic);

}

Naturally, the list of valid codes changes as banks establish new branches or close existing ones,
so getting the currently valid codes is an impure operation involving either a query to some
external system or reading from mutable state.

Can you require that the list of valid codes be injected in the constructor? I would argue that you
can’t, because, in that case, who would take the responsibility of retrieving the codes?

The client code depends on the validator, so it should certainly not do the validator’s work.
The instantiating code doesn’t know when or whether the validator will be used. Maybe
some prior validation will fail and the valid codes are never required.

In either case, you’d violate the single-responsibility principle. You could, of course, use the
interface-based approach and inject some repository from which you can obtain the list of valid
code, but, as I’ve shown, this involves a rather tedious ceremony. What about just requiring a
function that you can invoke to query the codes?

public sealed class BicExistsValidator : IValidator<MakeTransfer>

{

 readonly Func<IEnumerable<string>> getValidCodes;

 public BicExistsValidator(Func<IEnumerable<string>> getValidCodes)

 {

 this.getValidCodes = getValidCodes;

 }

 public bool IsValid(MakeTransfer cmd)

 => getValidCodes().Contains(cmd.Bic);

}

This solution ticks all the boxes. Now you don’t need to define any unnecessary interfaces, and
BicExistsValidator has no side effects other than the ones caused by invoking getValidCodes. This
means that you can still easily write unit tests:

(50)

Remember, a function signature is an interface; essentially, in this function-based approach to
dependency injection, a class declares what functions it depends on. This is equivalent to
declaring that it depends on an interface with just one method, but without the noise of header
interfaces. We’ll pursue this approach further in chapter 7.

(51)

2.4. Purity and the evolution of computing

I hope that this chapter has made the concept of function purity less mysterious and has shown
why extending the footprint of pure code is a worthwhile objective, improving the
maintainability and testability of your code.

The evolution of software and hardware also has important consequences for how we think about
purity. Our systems are increasingly distributed, so the I/O part of our programs is increasingly
important. With microservices architectures becoming mainstream, our programs consist less of
doing computation and more of delegating computation to other services, which they
communicate with via I/O.

This increase in I/O requirements means purity is harder to achieve. But it also means increased
requirements for asynchronous I/O, and as you’ve seen, purity helps you deal with concurrent
scenarios, which includes dealing with asynchronous messages.

Hardware evolution is also important: CPUs aren’t getting faster at the same pace as before, so
hardware manufacturers are moving toward combining multiple processors. Parallelization is
becoming the main road to computing speed, so there’s a need to write programs that can be
parallelized well. Indeed, the move toward multicore machines is one of the main reasons for the
renewed interest we’re currently seeing in FP.

Exercises

1. Write a console app that calculates a user’s Body Mass Index (BMI):

1. Prompt the user for their height in meters and weight in kilograms.
2. Calculate the BMI as weight / height2.
3. Output a message: underweight (BMI < 18.5), overweight (BMI >= 25), or healthy.
4. Structure your code so that pure and impure parts are separate.

2. Unit test the pure parts.
3. Unit test the overall workflow using the function-based approach to abstract away the

reading from and writing to the console.

Because most of this chapter was devoted to seeing the concept of purity in practice, I encourage
you to investigate applying the techniques we discussed to some code you’re presently working
on: you can learn something new while getting paid for it!

1. Find a place where you’re doing some non-trivial operation based on a list (search for
foreach). See if the operation can be parallelized; if not, see if you can extract a pure part
of the operation, and parallelize that part.

2. Search for uses of DateTime.Now or DateTime.UtcNow in your codebase. If that area isn’t under
test, bring it under test using both the interface-based approach and the function-based
approach described in this chapter.

3. Look for other areas of your code where you’re relying on an impure dependency that has
no transitive dependencies—the obvious candidates are impure static classes in the
framework, such as ConfigurationManager or Environment. Try to apply the function-based
testing pattern.

(52)

Summary

Compared to mathematical functions, programming functions are more difficult to reason
about because their output may depend on variables other than their input arguments.
Side effects include state mutation, throwing exceptions, and I/O.
Functions without side effects are called pure. These functions do nothing other than
returning a value that depends solely on their input arguments.
Pure functions can be more readily optimized and tested than impure ones, and they can be
used more reliably in concurrent scenarios, so you should prefer pure functions whenever
possible.
Unlike other side effects, I/O can’t be avoided, but you can still isolate the parts of your
application that perform I/O in order to reduce the footprint of impure code.

(53)

Chapter 3. Designing function signatures and types
This chapter covers

Well-designed function signatures
Fine-grained control over the inputs to a function
Using Option to represent the possible absence of data

The principles we’ve covered so far define functional programming in general, regardless of
whether you’re programming in a statically typed language like C# or a dynamically typed
language like JavaScript. In this chapter, you’ll learn some functional techniques that are specific
to statically typed languages: because both the functions and their arguments are typed, this
opens up a whole set of interesting considerations.

Functions are the building blocks of a functional program, so getting the function signature right
is paramount. And because a function signature is defined in terms of the types of its inputs and
outputs, getting those types right is just as important. Type design and function signature design
are really two faces of the same coin.

You may think that, after years of defining classes and interfaces, you know how to design your
types and your functions. But it turns out that FP brings a number of interesting concepts to the
table that can help you increase the robustness of your programs and the usability of your APIs.

(54)

3.1. Function signature design

As you code more functionally, you’ll find yourself looking at the function signatures more
often. Defining function signatures will be an important step in your development process, often
the first thing you do as you approach a problem.

If we’re going to talk about function signatures, we’ll need some notation, so I’ll start by
introducing a notation for functions that’s standard in the FP community, and we’ll use it
throughout the book.

3.1.1. Arrow notation

The arrow notation for expressing function signatures is very similar to notation used in
languages like Haskell and F#.[1] Let’s say we have a function f from int to string; that is, it
takes an int as input and yields a string as output. We’ll notate the signature like this:

1

These languages have a Hindley-Milner type system (significantly different from C#’s type
system), and signatures in arrow notation are called Hindley-Milner type signatures. I’m not
interested in following it rigorously; instead I’ll try to make it approachable to the C#
programmer.

f : int → string

In English, you’d read that as “f has type of int to string” or “f takes an int and yields a string.”
In C#, a function with this signature is assignable to Func<int, string>.

You’ll probably agree that the arrow notation is more readable than the C# type, and that’s why
we’ll use it when discussing signatures. When we have no input or no output (void), we’ll
indicate this with ().

Let’s look at some examples. Table 3.1 shows function types expressed in arrow notation side by
side with the corresponding C# delegate type and an example implementation of a function that
has the given signature, in lambda notation.

Table 3.1. Expressing function signatures with arrow notation

Function signature C# type Example

int → string Func<int, string> (int i) => i.ToString()
() → string Func<string> () => "hello"

int → () Action<int> (int i) => WriteLine($"gimme
{i}")

() → () Action () => WriteLine("Hello
World!")

(int, int) → int Func<int, int, int> (int a, int b) => a + b

(55)

The last example in table 3.1 shows multiple input arguments: we’ll just group them with
parentheses (parentheses are used to indicate tuples; that is, we’re notating a binary function as a
unary function whose input argument is a binary tuple).

Now let’s move on to more complex signatures, namely those of HOFs. Let’s start with the
following method (from chapter 1) that takes a string and a function from IDbConnection to R and
returns an R:

public static R Connect<R>(string connStr, Func<IDbConnection, R> func)

 => Using(new SqlConnection(connStr)

 , conn => { conn.Open(); return func(conn); });

How would you notate this signature? The second argument is itself a function, so it can be
notated as IDbConnection → R. The HOF’s signature will be notated as follows:

(string, (IDbConnection → R)) → R

And this is the corresponding C# type:

Func<string, Func<IDbConnection, R>, R>

The arrow syntax is slightly more lightweight, and is more readable, especially as the complexity
of the signature increases. There’s great benefit to learning it, because you’ll find it in books,
articles, and blogs on FP: it’s the lingua franca used by functional programmers from different
languages.

3.1.2. How informative is a signature?

Some function signatures are more expressive than others, by which I mean that they give us
more information about what the function is doing, what inputs are permissible, and what outputs
we can expect. The signature () → (), for example, gives us no information at all: it may print
some text, increment a counter, launch a spaceship... who knows! On the other hand, consider
this signature:

(IEnumerable<T>, (T → bool)) → IEnumerable<T>

Take a minute and see if you can guess what a function with this signature does. Of course, you
can’t really know for sure without seeing the actual implementation, but you can make an
educated guess. The function returns a list of T’s as input; it also takes a list of T’s, as well as a
second argument, which is a function from T to bool: a predicate on T.

It’s reasonable to assume that the function will use the predicate on T to somehow filter the
elements in the list. In short, it’s a filtering function. Indeed, this is exactly the signature of
Enumerable.Where.

Let’s look at another example:

(IEnumerable<A>, IEnumerable, ((A, B) → C)) → IEnumerable<C>

Can you guess what the function does? It returns a sequence of C’s and takes a sequence of A’s, a
sequence of B’s, and a function that computes a C from an A and a B. It’s reasonable to assume that
this function applies the computation to elements from the two input sequences, returning a third
sequence with the computed results. This function could be the Enumerable.Zip function, which
we discussed in chapter 2.

(56)

These last two signatures are so expressive that you can make a good guess at the
implementation, which is, of course, a desirable trait. When you write an API, you want it to be
clear, and if the signature goes hand in hand with good naming in expressing the intent of the
function, all the better.

Of course, there are limits on how much a function signature can express. For instance,
Enumerable.TakeWhile, a function that traverses a given sequence, yielding all elements, as long as
a given predicate evaluates to true, has the same signature as Enumerable.Where. This makes sense,
because TakeWhile can also be viewed as a filtering function, but one that works differently than
Where.

In summary, some signatures are more expressive than others. As you develop your APIs, make
your signatures as expressive as possible—this will facilitate the consumption of your API and
add robustness to your programs. We’ll look at a few examples showing why as we proceed
through the chapter.

(57)

3.2. Capturing data with data objects

Much of this chapter will focus on ways to represent the absence, or the possible absence, of
data. These can seem somewhat abstract concepts, so let’s start with what happens when we
actually do have some data to represent.

To represent data, we use data objects: objects that contain data, but no logic. These are also
called “anemic” objects, but there’s no negative connotation in the name. In FP (unlike OOP) it’s
natural to draw a separation between logic and data:

Logic is encoded in functions.
Data is captured with data objects, which are used as inputs and outputs to these functions.

Imagine that, in the context of a life or health insurance application, you need to write a function
that calculates a customer’s risk profile, based on their age. The risk profile will be captured with
an enum:

enum Risk { Low, Medium, High }

You’re pairing with a colleague who comes from a dynamically typed language, and he has a
stab at implementing the function. He runs it in the REPL with a few inputs to see that it works
as expected:

Risk CalculateRiskProfile(dynamic age)

 => (age < 60) ? Risk.Low : Risk.Medium;

CalculateRiskProfile(30) // => Low

CalculateRiskProfile(70) // => Medium

Although the implementation does seem to work when given reasonable inputs, you’re surprised
by his choice of dynamic as the argument type, so you show him that his implementation allows
client code to invoke the function with a string, causing a runtime error:

CalculateRiskProfile("Hello")

// => runtime error: Operator '<' cannot be applied to operands of type 'string' and 'int'

You explain to your colleague that “you can tell the compiler what type of input your function
expects, so that invalid inputs can be ruled out,” and you rewrite the function, taking an int as
the type of the input argument:

Risk CalculateRiskProfile(int age)

 => (age < 60) ? Risk.Low : Risk.Medium;

CalculateRiskProfile("Hello")

// => compiler error: cannot convert from 'string' to 'int'

Is there still room for improvement?

3.2.1. Primitive types are often not specific enough

As you keep testing your function, you find that the implementation still allows for invalid
inputs:

CalculateRiskProfile(-1000) // => Low

CalculateRiskProfile(10000) // => Medium

(58)

Clearly, these are not valid values for a customer’s age. What’s a valid age, anyway? You have a
word with the business to clarify this, and they indicate that a reasonable value for an age must
be positive and less than 120. Your first instinct is to add some validation to your function—if
the given age is outside of the valid range, throw an exception:

Risk CalculateRiskProfile(int age)

{

 if (age < 0 || 120 <= age)

 throw new ArgumentException($"{age} is not a valid age");

 return (age < 60) ? Risk.Low : Risk.Medium;

}

CalculateRiskProfile(10000)

// => runtime error: 10000 is not a valid age

As you type this, you’re thinking that this is rather annoying:

You’ll have to write additional unit tests for the cases in which validation fails.
There are a few other areas of the application where an age is expected, so you’re probably
going to need the same validation in those places. This will cause some duplication.

Duplication is usually a sign that separation of concerns has been broken: the
CalculateRiskProfile function, which should only concern itself with the calculation, now also
concerns itself with validation. Is there a better way?

3.2.2. Constraining inputs with custom types

In the meantime, another colleague, who comes from a statically typed functional language, joins
the session. She looks at your code so far and finds that the problem lies in your use of int to
represent age. She comments: “You can tell the compiler what type of input your function
expects, so that invalid inputs can be ruled out.”

Your dynamically typed colleague listens in amazement, because those were the very words you
patronized him with a few moments earlier. You’re not sure what she means exactly, so she
starts to implement Age as a custom type that can only represent a valid value for an age.

Listing 3.1. A custom type that can only be instantiated with a valid value

public class Age

{

 public int Value { get; }

 public Age(int value)

 {

 if (!IsValid(value))

 throw new ArgumentException($"{value} is not a valid age");

 Value = value;

 }

 private static bool IsValid(int age)

 => 0 <= age && age < 120;

}

In this implementation, Age still uses an int in its underlying representation, but the constructor
ensures that Age can only be instantiated with a valid value.

This is functional thinking in action, because the Age type is being created precisely to represent

(59)

the domain of the CalculateRiskProfile function, which can now be rewritten as follows:

Risk CalculateRiskProfile(Age age)

 => (age.Value < 60) ? Risk.Low : Risk.Medium;

This new implementation has several advantages. You’re guaranteeing that only valid values can
be given; CalculateRiskProfile no longer causes runtime errors; and the concern of validating the
age value is captured in the constructor of the Age type, removing the need for duplicating
validation wherever an age is processed. You’re still throwing an exception in the Age
constructor, but we’ll remedy that before the end of the chapter.

You can still improve things somewhat. In the preceding implementation, you’re using Value to
extract the underlying value of the age, so you’re still comparing two integers. There are a couple
of problems with that:

Reading the Value property not only creates a bit of noise, it also means that you’re relying
on the internal representation of Age, which you might want to change in the future.
Because you’re performing integer comparison, you’re also not protected if, say, someone
accidentally changes the hardcoded value of 60 to 600.

You can address these issues by modifying the definition of Age as follows.

Listing 3.2. Encapsulating the internal representation of Age and the logic for comparison

Now the internal representation of an age is encapsulated, and the logic for comparison is within
the Age class. You can now rewrite your function as follows:

Risk CalculateRiskProfile(Age age)

 => (age < 60) ? Risk.Low : Risk.Medium;

What happens now is that a new Age will be constructed from the value 60, so that the usual
validation will be applied. (If this throws a runtime error, that’s fine, because it indicates a
developer error; more about this in chapter 6.) When the input age is then compared, this
comparison happens in the Age class, using the comparison operators you’ve defined. Overall, the
code is just as readable as before, but more robust.

In summary, primitive types are often used too liberally. If you need to constrain the inputs of
your functions, it’s usually better to define a custom type. This follows the idea of making
invalid state unrepresentable—in the preceding example, you can’t represent an age outside of

(60)

the valid bounds.

The new implementation of CalculateRiskProfile is identical to its original implementation,
except for the input type, which is now Age, and this ensures the validity of the data, as well as
making the function signature more explicit. A functional programmer might say that now the
function is “honest.” What does that mean?

3.2.3. Writing “honest” functions

You might hear functional programmers talk about honest or dishonest functions. An honest
function is simply one that does what it says on the tin; it honors its signature—always. For
instance, consider the function you ended up with:

Risk CalculateRiskProfile(Age age)

 => (age < 60) → Risk.Low : Risk.Medium;

Its signature is Age → Risk, which declares “Give me an Age and I will give you back a Risk.”
Indeed, there’s no other possible outcome.[2] This function behaves as a mathematical function,
mapping each element from the domain to an element of the codomain, as shown in figure 3.1.

2

There is, of course, the possibility of hardware failure, of the program running out of
memory, and so on, but these are not intrinsic to the function implementation.

Figure 3.1. An honest function does exactly what the signature says.

Compare this to the previous implementation, which looked like this:

Risk CalculateRiskProfile(int age)

{

(61)

 if (age < 0 || 120 <= age)

 throw new ArgumentException($"{age} is not a valid age");

 return (age < 60) ? Risk.Low : Risk.Medium;

}

Remember, a signature is a contract. The signature int → Risk says “Give me an int (any of the
232 possible values for int) and I’ll return a Risk.” But the implementation doesn’t abide by its
signature, throwing an ArgumentException for what it considers invalid input. (See figure 3.2.)

Figure 3.2. A dishonest function can have an outcome that isn’t accounted for in the signature.

That means this function is “dishonest”—what it really should say is “Give me an int, and I may
return a Risk, or I may throw an exception instead.” Sometimes there are legitimate reasons why
a computation can fail, but in this example, constraining the function input so that the function
always returns a valid value, is a much cleaner solution.

In summary, a function is honest if its behavior can be predicted by its signature: it returns a
value of the declared type; no throwing exceptions, and no null return values. Note that these
requirements are less stringent than function purity—“honesty” is an informal term, less
technical and less rigorously defined than purity, but still useful.

3.2.4. Composing values with tuples and objects

You might require more data to fine-tune the implementation of your calculation of health risk.
For instance, women statistically live longer than men, so you may want to account for this:

enum Gender { Female, Male }

Risk CalculateRiskProfile(Age age, Gender gender)

{

 var threshold = (gender == Gender.Female) ? 62 : 60;

(62)

 return (age < threshold) ? Risk.Low : Risk.Medium;

}

The signature of the function thus defined is as follows:

(Age, Gender) → Risk

How many possible input values are there? Well, there are two possible values for Gender and
120 for Age, so in total there are 2 * 120 = 240 possible inputs. Notice that if you define a tuple of
Age and Gender, 240 tuples are possible. The same is true if you define a custom object to hold
that same data, like this:

class HealthData

{

 public Age Age;

 public Gender Gender;

}

Whether you call a binary function that accepts Age and Gender or a unary function that takes
HealthData, 240 distinct inputs are possible; they’re just packaged up a bit differently.

Earlier I said that types represent sets, so the Age type represents a set of 120 elements and Gender
a set of 2 elements. What about more complex types, such as HealthData, which is defined in
terms of the former two?

Essentially, creating an instance of HealthData is equivalent to taking all the possible
combinations of the two sets Age and Gender (a Cartesian product), and picking one element. More
generally, every time you add a field to an object (or a tuple),you’re creating a Cartesian product
and adding a dimension to the space of the possible values of the object, as illustrated in figure
3.3.

Figure 3.3. An object or tuple as a Cartesian product

(63)

This concludes our brief foray into data object design. The main takeaway is that you should
model objects in a way that gives you fine control over the range of inputs that your functions
will need to handle. Counting the number of possible instances can bring clarity. Once you have
control over these simple values, it’s easy to aggregate them into more complex data objects.

Now let’s move on to the simplest value of all: the empty tuple, or Unit.

(64)

3.3. Modeling the absence of data with Unit

We’ve discussed how to represent data; what about when there is no data to represent? Many
functions are called for their side effects and return void. But this doesn’t play well with many
functional techniques, so in this section I’ll introduce Unit: a type that can be used to represent
the absence of data, without the problems of void.

3.3.1. Why void isn’t ideal

Let me start by illustrating why void is less than ideal. In chapter 1 we covered the all-purpose
Func and Action delegate families. But if they’re so all-purpose, why do we need two of them?
Why can’t we just use Func<Void> to represent a function that returns nothing, just as we use
Func<string> to represent a function that returns a string?

The problem is that although the framework has the System.Void type and the void keyword to
represent “no return value,” Void receives special treatment by the compiler and can’t therefore
be used as a return type (in fact, it can’t be used at all from C# code).

Let’s see why this can be a problem in practice. Say you need to gain some insight as to how
long certain operations take, and to do so you write a HOF that starts a stopwatch, runs the given
function, and stops the stopwatch, printing out some diagnostic information. This is a typical
example of the setup/teardown scenario illustrated in chapter 1. Here’s the implementation:

public static class Instrumentation

{

 public static T Time<T>(string op, Func<T> f)

 {

 var sw = new Stopwatch();

 sw.Start();

 T t = f();

 sw.Stop();

 Console.WriteLine($"{op} took {sw.ElapsedMilliseconds}ms");

 return t;

 }

}

If you wanted to read the contents of a file and log how long the operation took, you could use
this function like this:

var contents = Instrumentation.Time("reading from file.txt"

 , () => File.ReadAllText("file.txt"));

It would be quite natural to want to use this with a void-returning function. For example, you
might want to time how long it takes to write to a file, so you’d like to write this:

Instrumentation.Time("writing to file.txt"

 , () => File.AppendAllText("file.txt", "New content!", Encoding.UTF8));

The problem is that AppendAllText returns void, so it can’t be represented as a Func. To make the
preceding code work, you’d need to add an overload of Instrumentation.Time that takes an Action,
like this:

public static void Time(string op, Action act)

{

 var sw = new Stopwatch();

(65)

 sw.Start();

 act();

 sw.Stop();

 Console.WriteLine($"{op} took {sw.ElapsedMilliseconds}ms");

}

This is terrible! You have to duplicate the entire implementation just because of the
incompatibility between the Func and Action delegates. (The same dichotomy exists in the world
of asynchronous operations, between Task and Task<T>.) How can you avoid this?

3.3.2. Bridging the gap between Action and Func with Unit

If you’re going to use functional programming, it’s useful to have a different representation for
“no return value.” Instead of using void, which is a special language construct, we’ll use a special
value: the empty tuple. The empty tuple has no members, so it can only have one possible value;
since it contains no information whatsoever, that’s as good as no value.

The empty tuple is available in the System namespace;[3] uninspiringly, it’s called ValueTuple, but
I’ll follow the FP convention of calling it Unit (so called because only one value exists for this
type):[4]

3

Depending on what version of .NET you’re using, you may need to import the
System.ValueTuple package via NuGet to make tuples available. Newer versions of each
framework have (or will have) ValueTuple included in their core libraries.

4

Until recently, functional libraries have tended to define their own Unit type as a struct with
no members. The obvious downside is that these custom implementations aren’t compatible,
so I would call for library developers to adopt the nullary ValueTuple as the standard
representation for Unit.

using Unit = System.ValueTuple;

If you have a HOF that takes a Func, but you wish to use it with an Action, how can you go about
it? In chapter 1, I introduced the idea that you can write “adapter” functions to modify existing
functions to suit your needs. In this case, you want a way to easily convert an Action into a
Func<Unit>, and in my functional library I’ve defined ToFunc, an extension method on Action that
does just that.

Listing 3.3. Converting Action into Func<Unit>

(66)

When you call ToFunc with a given Action, you get back a Func<Unit>: a function that, when
invoked, will run the Action and return Unit.

With this in place, you can expand the Instrumentation class with a method that accepts an
Action, converts it into a Func<Unit>, and calls the existing overload that works with any Func<T>.

Listing 3.4. Writing HOFs that take a Func or an Action, without duplication

As you can see, this enables you to avoid duplicating any logic in the implementation of Time.
You must still expose the overload taking an Action, so that callers need not manually provide a
function that returns Unit. Given the constraints of the language, this is the best compromise for
handling both Action and Func.

While you may not be fully sold on Unit based on this example alone, you’ll see more examples
in this book where Unit and ToFunc are needed to take advantage of functional techniques. In
summary,

Use void to indicate the absence of data, meaning that your function is only called for side
effects and returns no information.

(67)

Use Unit as an alternative, more flexible representation when there’s a need for
consistency in the handling of Func and Action.

In this section we’ve looked at the sort of issues caused by the wide use of void, and you’ve seen
how you can represent the absence of data with Unit. Next, you’ll see how to represent data that
could be absent, and the much greater problems of null.

(68)

3.4. Modeling the possible absence of data with Option

The Option type is used to represent the possibility of the absence of data, something that in C#
and many other programming languages (as well as databases) is normally represented with null.
I hope to show you that Option gives a more robust and expressive representation of the possible
absence of data.

3.4.1. The bad APIs you use every day

The problem of representing the possible absence of data isn’t handled very gracefully in the
framework libraries. Imagine you go for a job interview and are given the following quiz:

Question: What does this program print?

Tip

NameValueCollection is a map from string to string. For example, when you call
ConfigurationManager.AppSettings to get the settings of a .config file, you get a

(69)

NameValueCollection.

Take a moment to read through the code. Then, write down what you think the program prints
(making sure nobody’s looking). And once you’ve answered that question, how much would you
be willing to bet that you got the right answer? If you’re like me, and have a nagging feeling that
as a programmer you should really be concerned with other things than these annoying details,
the rest of this section will help you see why the problem lies with the APIs themselves, and not
with your lack of knowledge.

The code uses indexers to retrieve items from two empty collections, so both operations will fail.
Indexers are, of course, just normal functions—the [] syntax is just sugar—so both indexers are
functions of type string → string, and both are dishonest.

The NameValueCollection indexer returns null if a key isn’t present. It’s somewhat open to
debate whether null is actually a string, but I’d tend to say no.[5] You give the indexer a
perfectly valid input string, and it returns the useless null value—not what the signature claims.

5

In fact, the language specification itself says so: if you assign null to a variable, as in string
s = null;, then s is string evaluates to false.

The Dictionary indexer throws a KeyNotFoundException, so it’s a function that says “Give me a
string and I’ll return you a string,” when it should actually say “give me a string and I may
return you a string, or I may throw an exception instead.”

To add insult to injury, the two indexers are dishonest in inconsistent ways. Knowing this, it’s
easy to see that the program prints the following:

green!

KeyNotFoundException

That is, the interface exposed by two different associative collections in .NET is inconsistent.
Who’d have thought? And the only way to find out is by looking at the documentation (boring)
or stumbling on a bug (worse).

Let’s look at the functional approach to representing the possible absence of data.

3.4.2. An introduction to the Option type

Option is essentially a container that wraps a value...or no value. It’s like a box that may contain a
thing, or it could be empty. The symbolic definition for Option is as follows:

Option<T> = None | Some(T)

Let’s see what that means. T is a type parameter—the type of the inner value—so an Option<int>
may contain an int, or not. The | sign means or, so the definition says that an Option<T> can be
one of two things—or, equivalently, it can be in one of two “states”:

None—A special value indicating the absence of a value. If the Option has no inner value,

(70)

we say that “the Option is None.”
Some(T)—A container that wraps a value of type T. If the Option has an inner value, we say
that “the Option is Some.”

Option is also called Maybe

Different functional frameworks use varying terminology to express similar concepts. A
common synonym for Option is Maybe, with the Some and None states called Just and Nothing
respectively.

Such naming inconsistencies are unfortunately quite common in FP, and this doesn’t help in the
learning process. In this book, I’ll try to present the most common synonyms for each pattern or
technique, and then stick with one name.

So from now on, I’ll stick to Option; just know that if you run across Maybe—say, in a JavaScript
or Haskell library—it’s the same concept.

We’ll look at implementing Option in the next subsection, but first let’s take a look at its basic
usage so you’re familiar with the API. I recommend you follow along in the REPL; you’ll need a
bit of setup, and that’s described in the “Using the LaYumba.Functional library in the REPL”
sidebar.

Using the LaYumba.Functional library in the REPL

Playing with the constructs in the LaYumba.Functional library in the REPL requires a bit of setup:

1. If you haven’t done so already, download and compile the code samples from
https://github.com/la-yumba/functional-csharp-code.

2. Reference the LaYumba.Functional library in your REPL. Just how this works depends on
your setup. On my system (using the REPL in Visual Studio, with the code samples
solution open), I can do so by typing the following:
#r "functional-csharp-code\LaYumba.Functional\bin\Debug\

 netstandard1.6\LaYumba.Functional.dll"

3. Type the following imports into the REPL:
using LaYumba.Functional;

using static LaYumba.Functional.F;

Once you’re set up, you can create some Options:

That was easy! Now that you know how to create Options, how can you interact with them? At

(71)

https://github.com/la-yumba/functional-csharp-code

the most basic level, you can do so with Match, a method that performs pattern matching. Simply
put, it allows you to run different code depending on whether the Option is None or Some.

For example, if you have an optional name, you can write a function that returns a greeting for
that name, or a general-purpose message if no name is given. Type the following into the REPL:

As you can see, Match takes two functions: the first one says what to do in the None case, the
second what to do in the Some case. In the Some case, the function will be given the inner value of
the Option (in this case, the string "John", the value given when the Option was created).

In the preceding call to Match, the named arguments None: and Some: are used for extra clarity. It’s
possible to omit those:

string greet(Option<string> greetee)

 => greetee.Match(

 () => "Sorry, who?",

 (name) => $"Hello, {name}");

In general, I will omit them because the empty parens () in the first lambda already suggest an
empty container (that is, an Option in the None state), whereas the parens with an argument inside,
(name), suggest a container with a value inside.

If this is all a bit confusing right now, don’t worry; things will fall into place as we go along. For
now, these are the things to remember:

Use Some(value) to wrap a value into an Option.
Use None to create an empty Option.
Use Match to run some code depending on the state of the Option.

For now, you can think of None as a replacement for null, and Match as a replacement for a null-
check. Conceptually, the preceding code is not so different from this:

string greet(string name)

 => (name == null)

 ? "Sorry, who?"

 : $"Hello, {name}";

You’ll see in subsequent sections why using Option is actually preferable to null, and why,
eventually, you won’t need to use Match very often. First, though, let’s have a look under the
hood.

3.4.3. Implementing Option

You can skip this section on first reading, or if you’re only interested in understanding enough to
be able to use Option. Here I’ll show you the techniques I used in the implementation of Option I
included in LaYumba.Functional. This is both to show you that there’s very little magic involved,

(72)

and to show possible ways to work around some limitations of the C# type system.

In many typed functional languages, Option can be defined with a one-liner along these lines:

type Option t = None | Some t

In C#, more work is required. First, you need None and Some<T> to represent each possible state for
an Option.

Listing 3.5. Implementing the Some and None types

The F class is meant as the entry point for client code; it exposes the value None, which is the
empty option, and the function Some, which will wrap a given T into a Some<T>.

None represents the absence of a value, so it’s a type with no instance fields. Just like Unit, there’s
only one possible value for None. Some has a single field that holds the inner value; this can’t be
null.

The preceding code allows you to explicitly create values in the None or Some state:

using static LaYumba.Functional.F;

var firstName = Some("Enrico");

var middleName = None;

(73)

The next step is to define the more general Option<T> type, which could be either None or Some<T>.
In terms of sets, Option<T> is the union of the set Some<T> with the singleton set None (see figure
3.4).

Figure 3.4. Option<T> is the union of the set Some(T) with the singleton set None.

This turns out not to be so easy, because C# doesn’t have language support for defining such
“union types.” Ideally I’d like to be able to write something like this.

Listing 3.6. Idealized relation of Option to its cases None and Some

namespace LaYumba.Functional

{

 interface Option<out T> { }

 namespace Option

 {

 public struct None : Option<T> { /* ... */ }

 public struct Some<T> : Option<T> { /* ... */ }

 }

}

That is, I’d like to say that None is an Option<T>, and so is Some<T>. Unfortunately, there are several
problems with the preceding code (which, as a consequence, doesn’t compile):

None doesn’t have (and doesn’t need) a type parameter T; it can’t therefore implement the
generic interface Option<T>. It would be nice if None could be treated as an Option<T>
regardless of what type the type parameter T is eventually assigned, but this isn’t
supported by C#’s type system.
An Option<T> can only be one of two things: None or Some<T>. It shouldn’t be possible for
any client assembly to define any other implementations of Option<T>, but there’s no
language feature to enforce this.

Given these issues, using an interface or abstract class for Option doesn’t work very well. Instead,
I defined Option<T> as a separate class and defined methods so that both None and Some<T> can be

(74)

implicitly converted into Option<T> (inheritance by implicit conversion, if you like).

Listing 3.7. Option<T> can capture both the Some and None states

This implementation of Option can represent both None and Some; it has a Boolean value to
discriminate between these two states, as well as a field of type T to store the inner value of a
Some.

You can now treat None as an Option<T> for any type T. When None is converted to an Option<T>,
the isSome flag will be false; the inner value will be the default value for T and will be
disregarded. When Some<T> is converted into an Option<T>, the isSome flag is true and the inner
value is stored.

I also added a method to implicitly lift a value of type T into an Option<T>, which will prove
convenient in some scenarios. It yields an Option in the None state if the value is null, and it wraps
the value into a Some otherwise.

The most important part is Match, which allows you to run code depending on the state of the
Option. Match is a method that says “Tell me what you want done when there’s no value, and what
you want done when there is a value, and I’ll do whatever’s appropriate.”

With this in place, you can consume an Option. Take another look at the use of Match I showed
earlier. It should be clearer now:

string greet(Option<string> greetee)

 => greetee.Match(

 None: () => "Sorry, who?",

 Some: (name) => $"Hello, {name}");

(75)

greet(None) // => "Sorry, who?"

greet(Some("John")) // => "Hello, John"

Note that there are many other possible ways to define an Option in C#. I’ve chosen this
particular implementation because it allows the cleanest API from the perspective of client code.
But Option is a concept, not a particular implementation, so don’t be alarmed if you see a
different implementation in another library or tutorial.[6] It will still have the defining features of
an Option:

6

For example, the popular mocking framework NSubstitute includes an implementation of
Option.

A value None that indicates the absence of a value
A function Some that wraps a value, indicating the presence of a value
A way to execute code conditionally on whether a value is present (in our case, Match)

Next, let’s see why it’s better to use Option than null to represent the possible absence of a value.

3.4.4. Gaining robustness by using Option instead of null

I mentioned earlier that None should be used instead of null, and Match instead of a null-check.
Let’s see what we gain by doing so with a practical example.

Imagine you have a form on your website that allows people to subscribe to a newsletter. A
subscriber enters their name and email, and this causes the creation of a Subscriber instance,
defined as follows, which is persisted to the database:

public class Subscriber

{

 public string Name { get; set; }

 public string Email { get; set; }

}

When it’s time to send out the newsletter, a custom greeting is computed for the subscriber,
which will be prepended to the body of the newsletter:

public string GreetingFor(Subscriber subscriber)

 => $"Dear {subscriber.Name.ToUpper()},";

This all works fine. Name can’t be null because it’s a required field in the signup form, and it’s not
nullable in the database.

Some months later, the rate at which new subscribers sign up drops, so the business decides to
lower the barrier to entry by no longer requiring new subscribers to enter their name. The name
field is removed from the form, and the database is modified accordingly.

This should be considered a breaking change, because it’s not possible to make the same
assumptions about the data any more. If you allow Name to be null, the code will happily compile,
and GreetingFor will throw an exception when it receives a Subscriber without a Name.

By this time, the person responsible for making the name optional in the database may be on a
different team than the person maintaining the code that sends out the newsletter. The code may

(76)

be in different repositories. In short, it may not be simple to look up all the uses of Name.

Instead, it’s better to explicitly indicate that Name is now optional. The Subscriber class should be
modified to look like this:

This not only clearly conveys the fact that a value for Name may not be available; it causes
GreetingFor to no longer compile. GreetingFor, and any other code that was accessing the Name
property, will have to be modified to take into account the possibility of the value being absent.
For example, you might modify it like so:

public string GreetingFor(Subscriber subscriber)

 => subscriber.Name.Match(

 () => "Dear Subscriber,",

 (name) => $"Dear {name.ToUpper()},");

By using Option, you’re forcing the users of your API to handle the case in which no data is
available. This places greater demands on the client code, but it effectively removes the
possibility of a NullReferenceException occurring. Changing a string to an Option<string> is a
breaking change: in this way, you’re trading runtime errors for compile-time errors, thus making
a compiling application more robust.

3.4.5. Option as the natural result type of partial functions

We’ve discussed how functions map elements from one set to another, and how types in typed
programming languages describe such sets. There’s an important distinction to make between
total and partial functions:

Total functions are mappings that are defined for every element of the domain.
Partial functions are mappings that are defined for some, but not all, elements of the
domain.

Partial functions are problematic because it’s not clear what the function should do when given
an input for which it can’t compute a result? The Option type offers a perfect solution to model
such cases: if the function is defined for the given input, it returns a Some wrapping the result;
otherwise, it returns None.

Let’s look at some common use cases in which we can use this approach.

Parsing strings

Imagine a function that parses a string representation of an integer. You could model this as a
function of type string → int. This is clearly a partial function because not all strings are valid
representations of integers. In fact, there are infinitely many strings that can’t be mapped to an
int.

You can provide a safer representation of parsing with Option, by having the parser function
return an Option<int>. This will be None if the given string couldn’t be parsed, as illustrated in

(77)

figure 3.5.

Figure 3.5. Parsing a string as an int is a partial function

A parser function with the signature string → int is partial, and it’s not clear from the signature
what will happen if you supply a string that can’t be converted to an int. On the other hand, a
parser function with signature string → Option<int> is total, because for any given string it will
return a valid Option<int>.

Here’s an implementation that uses the framework methods to do the grunt work but exposes an
Option-based API:

public static class Int

{

 public static Option<int> Parse(string s)

 {

 int result;

 return int.TryParse(s, out result)

 ? Some(result) : None;

 }

}

The helper functions in this subsection are included in LaYumba.Functional, so you can try them
out in the REPL:

Int.Parse("10") // => Some(10)

Int.Parse("hello") // => None

Similar methods are defined to parse strings into other commonly used types, like doubles and
dates, and, more generally, to convert data in one form to another more restrictive form.

Looking up data in a collection

In the opening part of this section, I showed you that the framework collections expose an API

(78)

that’s neither honest nor consistent in representing the absence of data. The gist was as follows:

new NameValueCollection()["green"]

// => null

new Dictionary<string, string>()["blue"]

// => runtime error: KeyNotFoundException

The fundamental problem is the following. An associative collection maps keys to values, and
can therefore be seen as a function of type TKey → TValue. But there’s no guarantee that the
collection contains a value for every possible key of type TKey, so looking up a value can always
be a partial function.

A better, more explicit way to model the retrieval of a value is by returning an Option. It’s
possible to write adapter functions that expose an Option-based API, and I generally name these
Option-returning functions Lookup:

Lookup : (NameValueCollection, string) → Option<string>

Lookup takes a NameValueCollection and a string (the key), and will return Some with the value if
the key exists, and None otherwise. Here’s the implementation:

public static Option<string> Lookup

 (this NameValueCollection @this, string key)

 => @this[key];

That’s it! The expression @this[key] is of type string, whereas the return value is Option<string>,
so the string value will be implicitly converted into an Option<string>. (Remember, in the
implementation of Option shown earlier, implicit conversion from a value T to an Option<T> was
defined to return None if the value was null, and to lift the value into a Some otherwise.) We’ve
gone from a null-based API to an Option-based API.

Here’s an overload of Lookup that takes an IDictionary. The signature is similar:

Lookup : (IDictionary<K, T>, K) → Option<T>

The Lookup function can be implemented as follows:

public static Option<T> Lookup<K, T>

 (this IDictionary<K, T> dict, K key)

{

 T value;

 return dict.TryGetValue(key, out value)

 ? Some(value) : None;

}

We now have an honest, clear, and consistent API to query both collections. When you access
these collections with Lookup, the compiler forces you to handle the None case and you know
exactly what to expect:

new NameValueCollection().Lookup("green")

// => None

new Dictionary<string, string>().Lookup("blue")

// => None

No more KeyNotFoundException or NullReferenceException because you asked for a key that wasn’t
present in the collection. The same approach can be applied when querying other data structures.

The smart constructor pattern

(79)

Earlier in this chapter, we defined the Age type, a type more restrictive than int, that only allows
the representation of a valid value for a person’s age. When creating an Age from an int, we
needed to account for the possibility that the given int didn’t represent a valid age. You can
again model this with Option, as shown in figure 3.6.

Figure 3.6. Converting from int to Age can also be modeled with Option.

If you need to create an Age from an int, instead of calling the constructor (which has to throw an
exception if it’s unable to create a valid instance), you can define a function that returns Some or
None to indicate the successful creation of an Age. This is known as a smart constructor: it’s
“smart” in the sense that it’s aware of some rules and can prevent the construction of an invalid
object.

Listing 3.8. Implementing a smart constructor for Age

(80)

If you now need to obtain an Age from an int, you’ll get an Option<Age> instead, which forces you
to account for the failure case. If your Option<Age> is None, what do you do with it? Well, that
depends on the context and requirements. In upcoming chapters we’ll look at how you can work
effectively with Options. Although Match is the basic way of interacting with an Option, we’ll
build a rich, high-level API starting in the next chapter.

In summary, Option should be your default choice when representing a value that’s, well,
optional! Use it in your data objects to model the fact that a property may not be set, and in your
functions to indicate the possibility that a suitable value may not be returned. Apart from
reducing the chance of a NullReferenceException, this will enrich your model and make your code
more self-documenting.

Guarding against NullReferenceException

To further bulletproof your code against lurking NullReferenceExceptions, never write a function
that explicitly returns null, and always check that the inputs to public methods in your APIs
aren’t null.[7] The only reasonable exception for this is optional arguments, which need their
default value to be a compile-time constant.

7

This tedious task can be automated using PostSharp. If you’re inclined to go this way, check
out NullGuard (https://github.com/haacked/NullGuard), which allows you to disallow null
arguments on a per-assembly basis, giving you the best protection with the least amount of
boilerplate.

Using Option in your function signature is one way you can attain the overarching
recommendation of this chapter: designing function signatures that are honest and highly
descriptive of what can be expected from the function. I’ve tried to show how this makes your
application more robust by reducing the chances of runtime errors, but nothing beats proof by
experiment, so try these ideas out in your own code.

In the next chapter, we’ll enrich the Option API. Option will be your friend, not only when you
use it in your programs, but also as a simple structure through which I’ll illustrate many FP
concepts.

Exercises

1. Write a generic function that takes a string and parses it as a value of an enum. It should be

(81)

https://github.com/haacked/NullGuard

usable as follows:
Enum.Parse<DayOfWeek>("Friday") // => Some(DayOfWeek.Friday)

Enum.Parse<DayOfWeek>("Freeday") // => None

2. Write a Lookup function that will take an IEnumerable and a predicate, and return the first
element in the IEnumerable that matches the predicate, or None if no matching element is
found. Write its signature in arrow notation:
bool isOdd(int i) => i % 2 == 1;

new List<int>().Lookup(isOdd) // => None

new List<int> { 1 }.Lookup(isOdd) // => Some(1)

3. Write a type Email that wraps an underlying string, enforcing that it’s in a valid format.
Ensure that you include the following:

A smart constructor
Implicit conversion to string, so that it can easily be used with the typical API for
sending emails

4. Take a look at the extension methods defined on IEnumerable in System.LINQ.Enumerable.[8]

Which ones could potentially return nothing, or throw some kind of not-found exception,
and would therefore be good candidates for returning an Option<T> instead?

8

See the Microsoft documentation of Enumerable Methods:
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable

5. Write implementations for the methods in the following AppConfig class. (For both
methods, a reasonable one-line method body is possible. Assume the settings are of type
string, numeric, or date.) Can this implementation help you to test code that relies on
settings in a .config file?
using System.Collections.Specialized;

using System.Configuration;

using LaYumba.Functional;

public class AppConfig

{

 NameValueCollection source;

 public AppConfig() : this(ConfigurationManager.AppSettings) { }

 public AppConfig(NameValueCollection source)

 {

 this.source = source;

 }

 public Option<T> Get<T>(string name)

 {

 // your implementation here...

 }

 public T Get<T>(string name, T defaultValue)

 {

 // your implementation here...

 }

}

Summary

Make your function signatures as specific as possible. This will make them easier to

(82)

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable

consume and less error-prone.
Make your functions honest. An honest function always does what its signature says, and
given an input of the expected type, it yields an output of the expected type—no
Exceptions, no nulls.
Use custom types rather than ad hoc validation code to constrain the input values of a
function, and use smart constructors to instantiate these types.
Use the Option type to express the possible absence of a value. An Option can be in one of
two states:

None, indicating the absence of a value
Some, a simple container wrapping a a non-null value

To execute code conditionally, depending on the state of an Option, use Match with the
functions you’d like to evaluate in the None and Some cases.

(83)

Chapter 4. Patterns in functional programming
This chapter covers

The core functions Map, Bind, Where, and ForEach
Introducing functors and monads
Working at different levels of abstraction

A pattern is a solution that can be applied to solve a variety of problems. The patterns we’ll
discuss in this chapter are simply functions; functions that are so ubiquitous when coding
functionally that they can be seen as the core functions of FP.

You’re probably familiar with some of these functions, like Where and Select, having used them
with IEnumerable. But you’ll see that the same operations can be applied to other structures, hence
establishing a pattern. I’ll illustrate this with Option in this chapter; other structures will follow in
coming chapters.

As usual, I suggest you type along in the REPL and see how these core functions can be used
(you’ll need to import the LaYumba.Functional library as previously shown).

(84)

4.1. Applying a function to a structure’s inner values

The first core function is Map. It takes a structure and a function, and applies the function to the
inner value(s) of the structure. Let’s start with the familiar case, in which the structure in
question is an IEnumerable.

4.1.1. Mapping a function onto a sequence

An implementation of Map for IEnumerable can be written as follows.

Listing 4.1. Map applies a function to each element of the given IEnumerable

public static IEnumerable<R> Map<T, R>

 (this IEnumerable<T> ts, Func<T, R> f)

{

 foreach (var t in ts)

 yield return f(t);

}

Map maps a list of T’s to a list of R’s by applying a function T → R to each element in the source
list. Notice that in this implementation the results are packaged into an IEnumerable as a result of
using the yield return statement.

A note about naming

In FP it’s normal to use variable names like t for a value of type T, ts for a collection of T’s, and
f (g, h, and so on) for a function. You can use more descriptive names when coding for more
specific scenarios, but when a function is as general as Map, where you really know nothing about
the value t or the function f, variables have correspondingly general names.

Graphically, Map can be illustrated as in figure 4.1.

Figure 4.1. Mapping a function over an IEnumerable

(85)

Let’s look at a simple usage:

Func<int, int> times3 = x => x * 3;

Range(1, 3).Map(times3);

// => [3, 6, 9]

Maybe you recognized that this is exactly the behavior you get when you call LINQ’s Select
method. Indeed, Map can be defined in terms of Select:

public static IEnumerable<R> Map<T, R>

 (this IEnumerable<T> ts, Func<T, R> f)

 => ts.Select(f);

This is potentially more efficient, because LINQ’s implementation of Select is optimized for
some specific implementations of IEnumerable. The point is that I’m going to use the name Map,
rather than Select, because Map is the standard terminology in FP, but you should consider Map and
Select synonyms.

4.1.2. Mapping a function onto an Option

Now let’s see how Map can be defined for a different structure: Option. The signature of Map for
IEnumerable is

(IEnumerable<T>, (T → R)) → IEnumerable<R>

Let’s follow the pattern and just replace IEnumerable with Option:

(Option<T>, (T → R)) → Option<R>

This signature says you have an Option that may contain a T, and a function from T to R; you must
return an Option that may contain an R. Can you think of an implementation?

Let’s see. If the Option is None, there is no T available, and all you can do is return None. An
implementation that only handles the None case would look like this:

public static Option<R> Map<T, R>

 (this Option.None _, Func<T, R> f)

 => None;

The implementation doesn’t do anything: you start with None and end up with None, and the given
function f is disregarded.

On the other hand, if the Option is Some, then its inner value is a T, so you can apply the given
function to it, obtaining an R, which you can then wrap in a Some. Hence, the implementation for
the Some case would look like this:

public static Option<R> Map<T, R>

 (this Option.Some<T> some, Func<T, R> f)

 => Some(f(some.Value));

The actual implementation caters to both possible states of the given Option, as you can see in the
following listing.

Listing 4.2. Definition of Map for Option

public static Option<R> Map<T, R>

(86)

 (this Option<T> optT, Func<T, R> f)

 => optT.Match(

 () => None,

 (t) => Some(f(t)));

If the given option is None, Map will just return an Option of the expected return type in the None
state. If it’s Some(t), where t is the wrapped value, it will feed t to the given function (T → R) and
then lift the resulting value into a new Option. You can see this in figure 4.2.

Figure 4.2. Mapping a function over an Option

(87)

Intuitively, it can be useful to think of Option as a special kind of list that can either be empty
(None) or contain exactly one value (Some). If you look at it in this light, it becomes very clear that
the implementations of Map for Option and IEnumerable are consistent: the given function gets
applied to all available inner values of the structure.

Let’s look at a simple example:

Func<string, string> greet = name => $"hello, {name}";

(88)

Option<string> _ = None;

Option<string> optJohn = Some("John");

_.Map(greet); // => None

optJohn.Map(greet); // => Some("hello, John")

Here’s a real-life analogy: you have a lovely, old aunt whose specialty is making apple pies. She
hates to go shopping, but boy, does she love baking pies (single responsibility principle).

You often drop a basket of apples outside her door on your way to work, and in the evening
you’ll find a basket of freshly made pies! Your aunt also has a sense of humor, so if you get
smart and leave an empty basket by her door, you’ll find an empty basket in return.

In this analogy, the basket represents the Option. The apples are the inner value of the input
option, and your aunt’s cooking skills are the function that gets applied to this inner value. Map is
the process of unboxing the apples, giving them to your aunt for processing, and reboxing the
baked pie.

class Apple { }

class ApplePie { public ApplePie(Apple apple) { } }

Func<Apple, ApplePie> makePie = apple => new ApplePie(apple);

Option<Apple> full = Some(new Apple());

Option<Apple> empty = None;

full.Map(makePie) // => Some(ApplePie)

empty.Map(makePie) // => None

4.1.3. How Option raises the level of abstraction

A really important thing to realize is that Option abstracts away the question of whether a value is
present or not. If you directly apply a function to a value, you have to somehow ensure that the

(89)

value is available. Instead, if you Map that function onto an Option, you don’t really care whether
the value is there or not—Map will apply the function or not, as appropriate.

This may not be fully clear at this point, but it will become so as you proceed through the book.
For now, let’s see if I can illustrate this idea. In chapter 3, we defined a function that would
calculate Risk based on Age, as follows:

Risk CalculateRiskProfile(Age age)

 => (age.Value < 60) ? Risk.Low : Risk.Medium;

Now, assume you’re doing a survey where people volunteer some personal information and
receive some statistics. Survey takers are modeled with a Subject class, defined as follows:

class Subject

{

 public Option<Age> Age { get; set; }

 public Option<Gender> Gender { get; set; }

 // many more fields...

}

Some fields, like Age, are modeled as optional, because survey takers can choose whether or not
to disclose this information.

This is how you’d compute the Risk of a particular Subject:

Option<Risk> RiskOf(Subject subject)

 => subject.Age.Map(CalculateRiskProfile);

Because Risk is based on the subject’s age, which is optional, the computed Risk is also optional.
You don’t have to worry about whether the Age is there or not; instead, you can map the function
that computes risk regardless, and allow the optionality to “spread” by returning the result
wrapped in an Option.

Next, let’s look at the Map pattern in a more general light.

4.1.4. Introducing functors

You’ve seen that Map is a function that follows a precise pattern, and that it’s used to apply a
function to the inner value(s) of a structure such as an IEnumerable or an Option, as well as many
others, like sets, dictionaries, trees, and more.

Let’s generalize the pattern. Let C<T> indicate a generic “container” that wraps some inner
value(s) of type T. Then the signature of Map can be generally written as follows:

Map : (C<T>, (T → R)) → C<R>

That is, Map can be defined as a function that takes a container C<T> and a function f of type (T →
R), and returns a container C<R> wrapping the value(s) resulting from applying f to the container’s
inner value(s).

In FP, a type for which such a Map function is defined is called a functor.[1] IEnumerable and Option
are functors, as you’ve just seen, and you’ll meet many more in the book. For practical purposes,
we can say that anything that has a reasonable implementation of Map is a functor. But what’s a
reasonable implementation? Essentially, Map should apply a function to the container’s inner
value(s) and, equally importantly, it should do nothing else; that is, Map should have no side

(90)

effects.[2]

1

Unfortunately, the term functor has different connotations depending on the context. In
mathematics, it identifies the function that is being mapped; in programming, it’s the
container over which you can map the function.

2

This is not the official definition, but it’s essentially equivalent.

Why is functor not an interface?

If both Option and IEnumerable support the Map operation, why are we not capturing this with an
interface? Indeed, it would be nice to do so, but unfortunately it’s not possible in C#. To
illustrate why, let’s try to define such an interface:

interface Functor<F<>, T>

{

 F<R> Map<R>(Func<T, R> f);

}

public struct Option<T> : Functor<Option, T>

{

 public Option<R> Map<R>(Func<T, R> f) => // ...

}

This doesn’t compile: we can’t use F<> as a type variable because unlike T, it doesn’t indicate a
type, but rather a kind; that is, a type that’s in turn parameterized with a generic type. And it’s
not enough for Map to return a Functor; it must return a functor of the very same kind as the
current instance.

Other languages (including Haskell and Scala) support so-called “higher-kinded types,” so it’s
possible to represent these more general interfaces with typeclasses, but in C# (and F#) we must
content ourselves with a lesser level of abstraction and follow a pattern-based approach.[3]

3

It’s possible to use the C# type system creatively and find a representation analogous to
typeclasses, but the resulting code is rather intricate and therefore not suitable for the intent
of this book.

(91)

4.2. Performing side effects with ForEach

In chapter 3, we discussed the dichotomy between Func and Action. We have this problem again
with Map: Map takes a Func, so what do we do if we want to perform an Action for each value in a
given structure?

You may know that List<T> has a ForEach method that takes an Action<T>, which it invokes for
each item in the list:

using static System.Console;

new List<int> { 1, 2, 3 }.ForEach(Write);

// prints: 123

This is essentially what we want. Let’s generalize this so we can call ForEach on any IEnumerable:

public static IEnumerable<Unit> ForEach<T>

 (this IEnumerable<T> ts, Action<T> action)

 => ts.Map(action.ToFunc()).ToImmutableList();

The code changes the Action to a Unit-returning function, and then relies on the implementation
of Map. This will only create a lazily evaluated sequence of Units. Here we actually want the side
effects to be performed; hence the call to ToImmutable-List. The usage is, unsurprisingly,

Enumerable.Range(1, 5).ForEach(Write);

// prints: 12345

Now let’s see the definition of ForEach for Option. This is defined trivially in terms of Map, using
the ToFunc function that converts an Action into a Func:[4]

4

You may ask yourself, Why not just add an overload for Map that takes an Action? The
problem is that in this case, the compiler fails to resolve to the right overload when we call
Map without specifying its generic arguments. The reason for this is fairly technical: overload
resolution doesn’t take into account output parameters, so it can’t distinguish between
Func<T, R> and Action<T> when it comes to overload resolution. The price to pay for such an
overload would be to always specify generic arguments when calling Map, again causing
noise. In short, the best solution is to introduce a dedicated ForEach method.

public static Option<Unit> ForEach<T>

 (this Option<T> opt, Action<T> action)

 => Map(opt, action.ToFunc());

The ForEach name can be slightly counterintuitive—remember, an Option has at most one inner
value, so the given action will be invoked exactly once (if the Option is Some) or never (if it’s
None).

Here’s an example of using ForEach to apply an Action to an Option:

var opt = Some("John");

opt.ForEach(name => WriteLine($"Hello {name}"));

// prints: Hello John

However, remember from chapter 2 that we should aim to separate pure logic from side effects.

(92)

We should use Map for logic and ForEach for side effects, so it would be preferable to rewrite the
preceding code as follows:

opt.Map(name => $"Hello {name}")

 .ForEach(WriteLine);

Isolate side effects

Make the scope of the Action that you apply with ForEach as small as possible: use Map for data
transformations and ForEach for side effects. This follows the general FP idea of avoiding side
effects if possible, and isolating them otherwise.

Take a moment to experiment in the REPL, and see that Map and ForEach can be used with both
IEnumerable and Option. Here’s an example:

using static System.Console;

using String = LaYumba.Functional.String;

Option<string> name = Some("Enrico");

name

 .Map(String.ToUpper)

 .ForEach(WriteLine);

// prints: ENRICO

IEnumerable<string> names = new[] { "Constance", "Albert" };

names

 .Map(String.ToUpper)

 .ForEach(WriteLine);

// prints: CONSTANCE

// ALBERT

Notice that you can use the same patterns, whether you’re working with Option or IEnumerable.
Isn’t that nice? You can now view both Option and IEnumerable as specialized containers, and you
have a set of core functions that allow you to interact with them. If you’re presented with a new
kind of container, and Map or ForEach are defined, you’ll probably have a very good idea of what
they do because you recognize the pattern.

Note

In the preceding code, I used LaYumba.Functional.String, a class that exposes some commonly
used functionality of System.String through static methods. This allows me to refer to
String.ToUpper as a function, without the need to specify the instance on which the ToUpper
instance method acts, as in: s => s.ToUpper().

In summary, ForEach is similar to Map, but it takes an Action rather than a function, so it’s used to
perform side effects. Let’s move on to the next core function.

(93)

4.3. Chaining functions with Bind

Bind is another very important function, similar to Map but slightly more complex. I’ll introduce
the need for Bind with a simple example. Suppose you want a simple program that reads the
user’s age from the console and prints out some related message. You also want error handling:
the age should be valid!

Remember, in the last chapter we defined Int.Parse to parse a string as an int. We also defined
Age.Of, a smart constructor that creates an Age instance from the given int. Both functions return
an Option:

Int.Parse : string → Option<int>

Age.Of : int → Option<Age>

Let’s see what happens if we combine them with Map:

string input;

Option<int> optI = Int.Parse(input);

Option<Option<Age>> ageOpt = optI.Map(i => Age.Of(i));

As you can see, we have a problem—we end up with a nested value: Option of Option of
Age...How are we going to work with that?

4.3.1. Combining Option-returning functions

It’s in such scenarios that Bind is handy. For Option, this is the signature of Bind:

Option.Bind : (Option<T>, (T → Option<R>)) → Option<R>

That is, Bind takes an Option and an Option-returning function, and applies the function to the
inner value of the Option. Here’s the implementation.

Listing 4.3. Implementation of Bind and Map for Option

The preceding listing replicates the definition of Map so that you can see how similar these are.
Simply put, the None case always returns None, so that the given function won’t be applied. The
Some case does apply the function; unlike Map, there’s no need to package the result into an Option
because f already returns an Option.

Now let’s see how we can put Bind to work in the example of parsing a string representing a

(94)

person’s age.

Listing 4.4. Using Bind to compose two functions that return an Option

Func<string, Option<Age>> parseAge = s

 => Int.Parse(s).Bind(Age.Of);

parseAge("26"); // => Some(26)

parseAge("notAnAge"); // => None

parseAge("180"); // => None

The function parseAge uses Bind to combine Int.Bind (which returns an Option<int>) and Age.Of
(which returns an Option<Age>). As a result, parseAge combines the check that the string represents
a valid integer and the check that the integer is a valid age value.

Let’s now see this in the context of a simple program that reads an age from the console and
prints out a related message:

Here’s a sample interaction with this program (user inputs are shown in bold):

Please enter your age

hello

Please enter your age

500

Please enter your age

45

Only 45! That's young!

Now let’s see how Bind works with IEnumerable.

4.3.2. Flattening nested lists with Bind

You’ve just seen how you can use Bind to avoid having nested Options. The same idea applies to
lists. But what are nested lists? Two-dimensional lists! We need a function that will apply a list-
returning function to a list. But rather than returning a two-dimensional list, it should flatten the
result into a one-dimensional list.

(95)

Remember that Map loops over a given IEnumerable and applies a function to each element. Bind is
similar, but with a nested loop, because applying the “bound” function also yields an IEnumerable.
The resulting list is flattened to a one-dimensional list. It’s probably easier to see this in code:

public static IEnumerable<R> Bind<T, R>

 (this IEnumerable<T> ts, Func<T, IEnumerable<R>> f)

{

 foreach (T t in ts)

 foreach (R r in f(t))

 yield return r;

}

If you’re intimately familiar with LINQ, you’ll recognize that this implementation is virtually
identical to SelectMany. So for IEnumerable, Bind and SelectMany are identical. Again, in this book
I’ll use the name Bind because it’s standard in FP-speak.

Let’s see it in action with an example. Suppose you have a list of neighbors, and each neighbor
has a list of pets. You want a list of all pets in the neighborhood:

var neighbors = new[]

{

 new { Name = "John", Pets = new Pet[] {"Fluffy", "Thor"} },

 new { Name = "Tim", Pets = new Pet[] {} },

 new { Name = "Carl", Pets = new Pet[] {"Sybil"} },

};

IEnumerable<IEnumerable<Pet>> nested = neighbors.Map(n => n.Pets);

// => [["Fluffy", "Thor"], [], ["Sybil"]]

IEnumerable<Pet> flat = neighbors.Bind(n => n.Pets);

// => ["Fluffy", "Thor", "Sybil"]

Notice how using Map yields a nested IEnumerable, whereas Bind yields a flat IEnumerable. (Also
notice that whichever way you look at the results of the preceding example, Bind doesn’t
necessarily yield more items than Map does, which does make the choice of the name SelectMany
seem rather odd.)

Figure 4.3 shows a graphical representation of Bind for IEnumerable, particularized to the types
and data in the neighborhood example.

Figure 4.3. Bind on IEnumerable returns a flat list.

As you can see, each function application yields an IEnumerable, and then the results for all
applications are flattened into a single IEnumerable.

4.3.3. Actually, it’s called a monad

Let’s now generalize the pattern for Bind. If we use C<T> to indicate some structure that contains
value(s) of type T, then Bind takes an instance of the container and a function with signature (T →
C<R>) and returns a C<R>. So the signature of Bind is always in this form:

(96)

Bind : (C<T>, (T → C<R>)) → C<R>

You saw that, for all practical purposes, functors are types for which a suitable Map function is
defined. Similarly, monads are types for which a Bind function is defined.You’ll sometimes hear
people talk of monadic bind to clarify that they’re not just talking about some function called
Bind, but about the Bind function that allows the type to be treated as a monad.

4.3.4. The Return function

In addition to the Bind function, monads must also have a Return function that “lifts” a normal
value T into a monadic value C<T>. For Option, this is the Some function we defined in chapter 3.

What’s the Return function for IEnumerable? Well, since there are many implementations of
IEnumerable, there are many possible ways to create an IEnumerable. In my functional library, I
have a suitable Return function for IEnumerable called List.

To stick with functional design principles, it uses an immutable implementation:

using System.Collections.Immutable;

public static IEnumerable<T> List<T>(params T[] items)

 => items.ToImmutableList();

The List function doesn’t only satisfy the requirement of the Return function—allowing us to
raise a simple T into an IEnumerable<T>—but also, thanks to the params arguments, gives us a nice
shorthand syntax for initializing lists:

using static F;

var empty = List<string>(); // => []

var singleton = List("Andrej"); // => ["Andrej"]

var many = List("Karina", "Natasha"); // => ["Karina", "Natasha"]

To summarize, a monad is a type M<T> for which the following functions are defined:

Return : T → M<T>

Bind : (M<T>, (T → C<R>)) → C<R>

There are certain properties that Bind and Return must observe for the type to be considered a
“proper” monad; these are called the monad laws. To avoid overloading this chapter with theory,
I’ll postpone a discussion of the monad laws until chapter 8.

Suffice it to say, Return should only do the minimal amount of work required to lift a T into a
M<T>, and nothing else. It should be as dumb as possible.

4.3.5. Relation between functors and monads

I said that functors are types for which Map is defined, whereas monads are types for which Return
and Bind are defined. You’ve also seen that both Option and IEnumerable are functors and monads,
because all these functions are defined.

So the question naturally arises, is every monad also a functor? Is every functor also a monad?
To answer that, let’s take another look at the signatures of the core functions:

Map : (C<T>, (T → R)) → C<R>

Bind : (C<T>, (T → C<R>)) → C<R>

(97)

Return : T → C<T>

If you have an implementation of Bind and Return, you can implement Map in terms of these: the
function T → R that Map takes as input can be turned into a function of type T → C<R> by
composing it with Return, and this function can be used as input to Bind. To convince yourself of
this, I propose in the exercises that you implement Map in terms of Bind and Return. Although the
implementation will be correct, it may be suboptimal, so normally Map will be given its own
implementation that doesn’t rely on Bind.

As for the second question, it turns out that the answer is no: not every functor is a monad. Bind
can’t be defined in terms of Map, so having an implementation of Map gives you no guarantee that
a Bind function can be defined. For example, some kinds of trees support Map but not Bind. On the
other hand, for most of the types we’ll discuss in this book, both Map and Bind can be defined.

(98)

4.4. Filtering values with Where

In chapter 1, you saw several uses of Where to filter the values of an IEnumerable. It turns out that
Where can also be defined for Option.

Listing 4.5. Filtering the inner value of an Option

public static Option<T> Where<T>

 (this Option<T> optT, Func<T, bool> pred)

 => optT.Match(

 () => None,

 (t) => pred(t) ? optT : None);

Given an Option and a predicate, you get back Some if the given Option was Some to begin with and
its inner value satisfies the predicate; otherwise, you get None. Again, if you think of Option as a
list with at most one item, this makes sense.

Here’s a simple usage:

bool IsNatural(int i) => i >= 0;

Option<int> ToNatural(string s) => Int.Parse(s).Where(IsNatural);

ToNatural("2") // => Some(2)

ToNatural("-2") // => None

ToNatural("hello") // => None

Here we build upon Int.Parse, which already returns an Option signaling whether the string has
been correctly parsed as an int, and we then use Where to additionally enforce that the value be
positive.

This concludes our initial exploration of the core functions. You’ll see a couple more as you
progress through the book, but the four functions described up to this point can take you a
surprisingly long way—as you’ll see in the next chapter.

The many names of the core functions

One of the hurdles of learning FP is that the same construct is given different names in different
languages or libraries. This is true of the core functions, so I’ve included the following table to
help you make sense of these synonyms when you encounter them elsewhere.

LaYumba.Functional LINQ Common synonyms

Map Select fMap, Project, Lift
Bind SelectMany FlatMap, Chain, Collect, Then
Where Where Filter
ForEach n/a Iter

When writing this book and the LaYumba.Functional library, I had do decide which names to
choose for these functions, and these choices are necessarily somewhat arbitrary. ForEach and
Where are good names and standard in .NET, but Select and SelectMany would be poor names if
used for functors/monads other than IEnumerable, so I chose to use Map and Bind, which are more

(99)

general, shorter, and very standard in the FP literature.

(100)

4.5. Combining Option and IEnumerable with Bind

I’ve mentioned that one way to look at Option is as a special case of a list that can either be empty
(None) or contain exactly one value (Some). You can even express this in code by making it
possible to convert an Option into an IEnumerable as follows:

public struct Option<T>

{

 public IEnumerable<T> AsEnumerable()

 {

 if (IsSome) yield return Value;

 }

}

If the Option is Some, the resulting IEnumerable will yield one item; if it’s None, it will yield no
items. You now have access to all the extension methods defined on IEnumerable, as in the
following example:

Some("thing").AsEnumerable().Count() // => 1

Is this actually useful? In practice, IEnumerable is often used to store data and Option to skip a
computation when a value isn’t present, so their intent is usually different.

Still, there are some cases in which it’s useful to combine them. There are scenarios in which you
may end up with an IEnumerable<Option<T>>, or vice versa, an Option<IEnumerable<T>>, and you
may want to flatten it into an IEnumerable<T>.

For example, let’s go back to the example of a survey, where each participant is modeled as a
Subject, and because it’s optional for participants to disclose their age, Subject. Age is modeled as
an Option<Age>:

You have the details of your participants stored in an IEnumerable<Subject>. Now suppose you
need to compute the average age of the participants, for those who chose to disclose their age.
How can you go about it? You can start by selecting all the values for Age:

var optionalAges = Population.Map(p => p.Age);

// => [Some(Age(33)), None, Some(Age(37))]

If you use Map to select the age of the survey takers, you get a list of options. And because an
Option can be viewed as a list, optionalAges can be viewed as a list of lists.

(101)

To translate this intuition into code, let’s add some overloads to Bind that convert the Option into
an IEnumerable, so that Bind can be applied as though we were flattening a nested IEnumerable:

public static IEnumerable<R> Bind<T, R>

 (this IEnumerable<T> list, Func<T, Option<R>> func)

 => list.Bind(t => func(t).AsEnumerable());

public static IEnumerable<R> Bind<T, R>

 (this Option<T> opt, Func<T, IEnumerable<R>> func)

 => opt.AsEnumerable().Bind(func);

Even though according to FP theory Bind should only work on one type of container, the fact that
an Option can always be “promoted” to the more general IEnumerable makes these overloads
valid, and quite useful in practice:

The first overload can be used to get an IEnumerable<T> where Map would give you an
IEnumerable<Option<T>>, as in the current survey example.
The second overload can be used to get an IEnumerable<T> where Map would give you an
Option<IEnumerable<T>>.

In the survey scenario, we can now use Bind to filter out all Nones and get a list of all the ages that
were actually given:

var optionalAges = Population.Map(p => p.Age);

// => [Some(Age(33)), None, Some(Age(37))]

var statedAges = Population.Bind(p => p.Age);

// => [Age(33), Age(37)]

var averageAge = statedAges.Map(age => age.Value).Average();

// => 35

This allows us to take advantage of the “flattening” nature of Bind to filter out all the None cases.
The preceding output shows the results of calling both Map and Bind so that you can compare the
results.

(102)

4.6. Coding at different levels of abstraction

Abstraction (in English, not in OOP) means that specific features of different concrete things are
removed in order for a general, common feature to emerge: a concept. For example, when you
say “You’ll see a row of houses,” or “Put your ducks in a row,” the row concept removes
anything that makes ducks differ from houses, and only captures their spatial disposition.

Types like IEnumerable and Option have such a conceptual abstraction at their core: all specific
features of their inner value(s) are abstracted away; these types only capture the ability to
enumerate the values, or the possible absence of a value, respectively. The same can be said for
most generic types.

Let’s try to generalize this, so that what you’ve learned for Option can help you understand other
constructs that you’ll see later in the book (and in other libraries).

4.6.1. Regular vs. elevated values

When you’re dealing with a type like, say, IEnumerable<int> or Option<Employee>, you’re coding at
a higher level of abstraction than when dealing with a non-generic type, like int or Employee.
Let’s divide the world of values we deal with into two categories:

Regular values, such as T
Elevated values, such as A<T>

Here, “elevated” values imply an abstraction of the corresponding regular types.[5] These
abstractions are constructs that enable us to better work with and represent operations on the
underlying types. More technically put, an abstraction is a way to add an “effect” to the
underlying type.[6]

5

Other authors refer to elevated values as wrapped, amplified values, and so on.

6

In this context, effect has a completely different meaning and shouldn’t be confused with
side effect. This is unfortunate, but standard, terminology.

Let’s look at some examples:

Option adds the effect of optionality effect—not a T, but the possibility of a T.
IEnumerable adds the effect of aggregation effect—not a T or two, but a sequence of T’s.
Func adds the effect of laziness effect—not a T, but a computation that can be evaluated to
obtain a T.
Task adds the effect of asynchrony—not a T, but a promise that at some point you’ll get a T.

As you can see from the preceding examples, things that are very different in nature can be
considered abstractions, so there’s little point in trying to fit the concept in a box. It’s more
interesting to see how these abstractions can be put to work.

(103)

Coming back to regular versus elevated values, you can visualize these different kinds of values
as in figure 4.4. This diagram shows an example of a regular type, int, with some sample values,
and the corresponding abstraction A<int>, where A could be an arbitrary abstraction. The arrows
that take a regular value and wrap it in a corresponding A represent the Return function.

Figure 4.4. Regular values and elevated values

4.6.2. Crossing levels of abstraction

Now that we have this classification of types, we can classify functions accordingly. We have
functions that remain within the same level of abstraction and functions that cross between levels
of abstraction, as illustrated in figure 4.5.[7]

7

This classification isn’t exhaustive because you can envisage more categories where the
application of a function would cause you to jump by several levels of abstraction or would
take you from one type of abstraction to another. But these are probably the most usual
kinds of functions you’ll encounter, so the classification is still useful.

Figure 4.5. Functions classified in relation to levels of abstractions

(104)

Let’s look at a few examples. The function (int i) => i.ToString() has signature int → string,
so it maps one regular type to another and is clearly of the first kind.

The Int.Parse function we’ve been using all along has type string → Option<int>, so it’s an
upward-crossing function—the third kind. Scott Wlaschin calls these world-crossing functions,
since they go from the world of normal values T to the world of elevated values E<T>
(extraterrestrial?).[8]

8

See Scott’s “Understanding map and apply” article here:
http://fsharpforfunandprofit.com/posts/elevated-world/.

The Return function (which for any abstraction A has type T → A<T>), is a special case of an
upward-crossing function that does nothing other than upward-crossing; that’s why I show Return
as a vertical upward arrow, and any other upward-crossing function as a diagonal arrow.

Functions of the second kind remain within the abstraction. So, for instance, the following
function is a clear match:

(IEnumerable<int> ints) => ints.OrderBy(i => i)

Its signature is in the form A<T> → A<R>. But we should also include in this category any function
in which we start with an A<T>, have some additional arguments, and ultimately end up with an
A<R>. That is, any function whose application keeps us within the abstraction; its signature will be
in the form (A<T>, ...) → A<R>. This includes many HOFs we’ve looked at, such as Map, Bind,
Where, OrderBy, and others.

Finally, downward-crossing functions—in which we start with an elevated value and end up with
a regular value—include, for IEnumerable, Average, Sum, Count; and for Option, Match.

Notice that, given an abstraction A, it’s not always possible to define a downward counterpart to
Return; that is, there is often no vertical downward arrow. You can always lift an int into an
Option<int>, but you can’t reduce an Option<int> to an int—what if it’s None? Similarly, you can
wrap a single Employee into an IEnumerable<Employee>, but there’s no obvious way to reduce an
IEnumerable<Employee> to a single Employee.

4.6.3. Map vs. Bind, revisited

Let’s see how we can use this new classification to better understand the difference between Map
and Bind.

Map takes an elevated value a of type A<T> and a regular function f of type T → R and returns an
elevated value of type A<R> (computed by applying f to the content of a and lifting the result into
an A). This is illustrated in figure 4.6.

Figure 4.6. Map in terms of regular vs. elevated values

(105)

http://fsharpforfunandprofit.com/posts/elevated-world/

Bind also takes an elevated value a of type A<T> but an upward-crossing function f of type T →
A<R> and returns an elevated value of type A<R> (computed by applying f to the content of a). See
figure 4.7.[9]

9

How exactly the value is calculated depends on the abstraction, but this is a good
approximation for now.

Figure 4.7. Bind in terms of regular vs. elevated values

If you use Map with an upward-crossing function of type T → A<R>, you’ll end up with a nested
value of type A<A<R>>. This is usually not the desired effect, and you should probably use Bind
instead.

4.6.4. Working at the right level of abstraction

This idea of working at different levels of abstraction is important. If you always deal with
regular values, you’ll probably be stuck with low-level operations such as for loops, null checks,
and so on. Working at such a low level of abstraction is inefficient and error-prone.

There’s a definite sweet spot when working within one abstraction, as in the following snippet
(from chapter 1):

Enumerable.Range(1, 100).

 Where(i => i % 20 == 0).

 OrderBy(i => -i).

 Select(i => $"{i}%")

 // => ["100%", "80%", "60%", "40%", "20%"]

Once you’ve used Range to go from regular values to an IEnumerable<int>, all following
computations stay within the IEnumerable abstraction. That is, staying within one abstraction
gives you the ability to nicely compose several operations—something we’ll delve into in the
next chapter.

There’s also the danger of going too deep, where you’re dealing with values in the form

(106)

A<B<C<D<T>>>>, where each level adds an abstraction and it’s difficult to deal with the deeply
buried T. This is something I’ll address in chapter 13.

In this chapter, you’ve seen the implementation of some core functions for working with Option
and IEnumerable. Although the implementations are simple, you’ve seen how this has given us a
rich API for working with Option, just as you’re used to with IEnumerable. Several common
operations can be defined for both Option and IEnumerable—patterns that apply to different kinds
of structures. With this API in place, and a better understanding of the core functions of FP,
you’re ready to tackle more complex scenarios.

Exercises

1. Implement Map for ISet<T> and IDictionary<K, T>. (Tip: start by writing down the signature
in arrow notation.)

2. Implement Map for Option and IEnumerable in terms of Bind and Return.
3. Use Bind and an Option-returning Lookup function (such as the one we defined in chapter 3)

to implement GetWorkPermit, shown below. Then enrich the implementation so that
GetWorkPermit returns None if the work permit has expired.

4. Use Bind to implement AverageYearsWorkedAtTheCompany, shown below (only employees who
have left should be included).
Option<WorkPermit> GetWorkPermit(Dictionary<string, Employee> people

 , string employeeId) => // your implementation here...

double AverageYearsWorkedAtTheCompany(List<Employee> employees)

 => // your implementation here...

public class Employee

{

 public string Id { get; set; }

 public Option<WorkPermit> WorkPermit { get; set; }

 public DateTime JoinedOn { get; }

 public Option<DateTime> LeftOn { get; }

}

public struct WorkPermit

{

 public string Number { get; set; }

 public DateTime Expiry { get; set; }

}

Summary

Structures like Option<T> and IEnumerable<T> can be seen as containers or abstractions,
allowing you to work more effectively with the underlying values of type T.
You can distinguish between regular values, say, T, and elevated values, like Option<T> or
IEnumerable<T>.
Some of the core functions of FP allow you to work effectively with elevated values:

Return is a function that takes a regular value and lifts it into an elevated value.
Map applies a function to the inner value(s) of a structure, and returns a new structure
wrapping the result.
ForEach is a side-effecting variant of Map that takes an action, which it performs for
each of the container’s inner values.
Bind maps an Option-returning function onto an Option and flattens the result to avoid
producing a nested Option—and similarly for IEnumerable and other structures.

(107)

Where filters the inner value(s) of a structure according to a given predicate.
Types for which Map is defined are called functors. Types for which Return and Bind are
defined are called monads.

(108)

Chapter 5. Designing programs with function
composition
This chapter covers

Defining workflows with function composition and method chaining
Writing functions that compose well
An end-to-end example of handling server requests with workflows

Function composition is not only powerful and expressive but also pleasant to work with. It’s
used to some extent in any programming style, but in FP it’s used extensively. For example, have
you noticed that when you use LINQ to work with lists, you can get a lot done with only a few
lines of code? That’s because LINQ is a functional API, designed with composition in mind.

In this chapter we’ll cover the basic concept and techniques of function composition and
illustrate its use with LINQ. We’ll also implement an end-to-end server-side workflow, in which
we’ll use the Option API introduced in chapter 4. This example will illustrate many of the ideas
and benefits of the functional approach, so we’ll end the chapter with a discussion of those.

(109)

5.1. Function composition

Let’s start by reviewing function composition and how it relates to method chaining. Function
composition is part of any programmer’s implicit knowledge. It’s a mathematical concept you
learn in school and then use every day without thinking about it too much, so let’s quickly brush
up on the definition.

5.1.1. Brushing up on function composition

Given two functions f and g, you can define a function h to be the composition of those two
functions, notated as follows:

h = f · g

Applying h to a value x is the same as applying g to that same value x to obtain an intermediate
result, and then applying f to that intermediate result. That is,

h(x) = (f · g)(x) = f(g(x))

For example, say you want to get an email address for someone working at Manning. You can
have a function calculate the local part (identifying the person) and another append the domain:

static string AbbreviateName(Person p)

 => Abbreviate(p.FirstName) + Abbreviate(p.LastName);

static string AppendDomain(string localPart)

 => $"{localPart}@manning.com";

static string Abbreviate(string s)

 => s.Substring(0, 2).ToLower();

AbbreviateName and AppendDomain are two functions that you can compose to get a new function
that will yield the Manning email for my hypothetical collaborator.

Listing 5.1. Defining a function as the composition of two existing functions

There are a couple of things worth noting. First, you can only compose functions with matching
types: if you’re composing (f · g), the output of g must be assignable to the input type of f.

Second, in function composition, functions appear in the reverse order in which they’re
performed. For example, in AppendDomain(AbbreviateName(p)), you first execute the rightmost
function, and then the one to its left. This is, of course, not ideal for readability, especially if you
want to compose several functions.

Unlike other languages, C# doesn’t have any special syntactic support for function composition,
and although you could define a HOF Compose to compose two or more functions, this doesn’t

(110)

improve readability. This is why in C# it’s usual to resort to method chaining instead.

5.1.2. Method chaining

The method chaining syntax (that is, chaining the invocation of several methods with the .
operator) provides a more readable way of achieving function composition in C#. Given an
expression, you can chain to it any method that’s defined as an instance or extension method on
the type of the expression.

For instance, the previous example would need to be modified as follows:

You can now chain these methods to obtain the email for the person.

Listing 5.2. Using method chaining syntax to compose functions

var joe = new Person("Joe", "Bloggs");

var email = joe.AbbreviateName().AppendDomain();

// => jobl@manning.com

Notice that now the extension methods appear in the order in which they will be executed. This
significantly improves readability, especially as the complexity of the workflow increases
(longer method names, additional parameters, more methods to be chained), and it’s why method
chaining is the preferable way of achieving function composition in C#.

5.1.3. Composition in the elevated world

Function composition is so important that it should also hold in the world of elevated values.
Let’s stay with the current example of determining a person’s email address, but now we’ll have
an Option<Person> as a starting value. You would assume that the following holds:

That is, whether you map AbbreviateName and AppendDomain in separate steps, or map their
composition emailFor in a single step, the result shouldn’t change, and you should be able to
safely refactor between these two forms.

More generally, if h = f · g, then mapping h onto a functor should be equivalent to mapping g

(111)

over that functor and then mapping f over the result. This should hold for any functor, and for
any pair of functions—it’s one of the functor laws, so any implementation of Map should observe
it.

If this sounds complicated, that’s probably because it describes something that you intuitively
feel should always, obviously hold. Indeed, it’s not easy to break this law, but you could come
up with a mischievous functor that, say, keeps an inner counter of how many times Map is applied
(or otherwise changes its state with every call to Map), and then the preceding wouldn’t hold,
because b would have a greater inner count than a.[1]

1

There’s another, even simpler functor law: that if you Map the identity function (x ⇒ x) over
a functor f, the resulting functor is identical to f. Simply put, the identity function should
hold in the elevated world of functors.

Simply put, Map should apply a function to the functor’s inner value(s), and do nothing else, so
that function composition holds when working with functors just as it does with normal values.
The beauty of this is that you can use any functional library in any programming language, and
use any functor with confidence that a refactoring such as changing between a and b in the
preceding snippet will be safe.

(112)

5.2. Thinking in terms of data flow

You can write entire programs with function composition. Each function somehow processes its
input, and the output becomes the input to the following function. When you do this, you start to
look at your program in terms of data flow: the program is just a set of functions, and data flows
through the program, through one function and into the next. Figure 5.1 illustrates a linear flow
—the simplest and most useful kind.

Figure 5.1. Data flowing through a sequence of functions

5.2.1. Using LINQ’s composable API

In the previous example, we made the AbbreviateName and AppendDomain methods chainable by
making them extension methods. This is also the approach taken in the design of LINQ, and if
you look at the System.Linq.Enumerable class, you’ll see that it contains dozens of extension
methods for working with IEnumerable. Let’s look at an example of composing functions with
LINQ.

Imagine that, given a population, you want to find the average earnings of the richest quartile
(that is, the richest 25% of people in the target population). You could write something like this.

Listing 5.3. Defining a query by chaining methods in Linq.Enumerable

static decimal AverageEarningsOfRichestQuartile(List<Person> population)

 => population

 .OrderByDescending(p => p.Earnings)

 .Take(population.Count / 4)

 .Select(p => p.Earnings)

 .Average();

Notice how cleanly you can write this query using LINQ (compared to, say, writing the same
query imperatively, with control flow statements). You may have some sense that internally the
code will iterate over the list, and that Take will have an if check to only yield the requested
number of items, but you don’t really care.

Instead, you can lay out your function calls in the form of a “flat” workflow; that is, a linear
sequence of instructions:

First, sort the population (richest at the top).
Then, only take the top 25%.
Then, take each person’s earnings and average them.

Notice how similar the code is to the workflow description. Let’s look at it in terms of data flow:
you can see the AverageEarningsOfRichestQuartile function as a very simple program. Its input is a
List<Person>, and the output is a decimal.

Furthermore, AverageEarningsOfRichestQuartile is effectively the composition of four functions,
so that the input data “flows” through four transformative steps and is thus stepwise transformed

(113)

into the output value, as shown in figure 5.2.

Figure 5.2. Data flow through the AverageEarningsOfRichestQuartile function

The first function, OrderByDescending, preserves the type of the data and yields a population sorted
by earnings. The second step also preserves the type of the data, but changes the cardinality: if
the input population is composed of n people, Take only yields n/4 people. Select preserves the
cardinality but changes the type to a list of decimals, and Average again changes the type to return
a single decimal value.[2]

2

Average also causes the whole chain of methods to be evaluated, because it’s the only
“greedy” method in the chain.

Let’s try to generalize this idea of data flow so that it applies not only to queries on IEnumerable,
but to data in general. Whenever something of interest happens in your program (a request, a
mouse click, or simply your program being started) you can think of that something as input.
That input, which is data, will then go through a series of transformations, as the data flows
through a sequence of functions in you program.

5.2.2. Writing functions that compose well

The simple AverageEarningsOfRichestQuartile function, shown in listing 5.3, demonstrates how
the design of the LINQ library allows you to compose general-purpose functions into specific
queries.

There are some properties that make some functions more composable than others:[3]

3

These are general guidelines: it will always be possible to compose functions that don’t
have these properties, but, in practice, these properties are good indicators of how easy and
useful it will be to compose those functions.

Pure— If your function has side effects, it’s less reusable.
Chainable— A this argument (implicit on instance methods and explicit on extension
methods) makes it possible to compose through chaining.
General— The more specific the function, the fewer cases there will be where it’s useful
to compose it.

(114)

Shape-preserving— The function preserves the “shape” of the structure; so, if it takes an
IEnumerable, it returns an IEnumerable, and so on.

And, naturally, functions are more composable than actions. Because an Action has no output
value, it’s a dead end, so it can only come at the end of a pipeline.

Notice that the LINQ functions we’ve used all score 100% based on these criteria, with the
exception of Average, which is not shape-preserving. Also note that the core functions we defined
in the Option API do very well.

How composable is AverageEarningsOfRichestQuartile? Well, about 40%: It’s pure, and it has an
output value, but it’s not an extension method, and it’s extremely specific. Let’s see how that
would affect some client code, and test it while we’re at it:

[TestCase(ExpectedResult = 75000)]

public decimal AverageEarningsOfRichestQuartile()

{

 var population = Range(1, 8)

 .Select(i => new Person { Earnings = i * 10000 })

 .ToList();

 return PopulationStatistics

 .AverageEarningsOfRichestQuartile(population);

}

The test passes, but it shows that AverageEarningsOfRichestQuartile doesn’t share the qualities of
the LINQ methods it’s composed of: it’s not chainable, and it’s so specific that you’d hardly
hope to reuse it. Let’s change that:

1. Split it into two more general functions: AverageEarnings (so that you can query the average
earnings for any segment of the population) and RichestQuartile (after all, there are many
other properties of the richest quartile you may be interested in).

2. Make them extension methods so that they can be chained:
public static decimal AverageEarnings

 (this IEnumerable<Person> population)

 => population.Average(p => p.Earnings);

public static IEnumerable<Person> RichestQuartile

 (this List<Person> pop)

 => pop.OrderByDescending(p => p.Earnings)

 .Take(pop.Count / 4);

Notice how easy it was to do this refactoring! This is because of the compositional nature of the
function we refactored: the new functions just compose fewer of the original building blocks. (If
you had an implementation of the same logic with for and if statements, the refactoring would
probably not have been as easy.)

You can now rewrite the test as follows:

[TestCase(ExpectedResult = 75000)]

public decimal AverageEarningsOfRichestQuartile()

 => SamplePopulation

 .RichestQuartile()

 .AverageEarnings();

List<Person> SamplePopulation

 => Range(1, 8)

 .Select(i => new Person { Earnings = i * 10000 })

 .ToList();

You can see how much more readable the test is now. By refactoring to smaller functions, and to

(115)

the extension method syntax, you’ve created more composable functions and a more readable
interface.

In this section, you’ve seen how LINQ provides (among many other things) a set of readily
composable functions that work effectively with IEnumerable. Next, we’ll see how we can use
declarative, flat workflows when working with Option. Let’s start by clarifying what we mean by
workflows and why they matter.

(116)

5.3. Programming workflows

Workflows are a powerful way of understanding and expressing application requirements. A
workflow is a meaningful sequence of operations leading to a desired result. For example, a
cooking recipe describes the workflow for preparing a dish.

Workflows can be effectively modeled through function composition. Each operation in the
workflow can be performed by a function, and these functions can be composed into function
pipelines that perform the workflow—just as you saw in the previous example involving data
flowing through different transformations in a LINQ query.

We’re now going to look at a more complex workflow of a server processing a command. The
scenario is that of a user requesting to make a money transfer through the Bank of Codeland
(BOC) online banking application. We’re only concentrating on the server side, so the workflow
is kicked off when the server receives a request to make a transfer. We can write down a
specification for the workflow as follows:

1. Validate the requested transfer.
2. Load the account.
3. If the account has sufficient funds, debit the amount from the account.
4. Persist the changes to the account.
5. Wire the funds via the SWIFT network.[4]

4

SWIFT is an interbank network; as far as we’re concerned, it’s just a third-party
application with which we need to communicate.

5.3.1. A simple workflow for validation

The entire money transfer workflow is fairly complex, so to get us started, let’s simplify it as
follows:

1. Validate the requested transfer.
2. Book the transfer (all subsequent steps).

That is, let’s say that all steps following validation are part of the subworkflow of actually
booking the transfer—which, of course, should only be triggered if validation passes (see figure
5.3).

Figure 5.3. Example workflow: validating a request before processing it

Let’s take a stab at implementing this very high-level workflow. Assume that the server uses

(117)

ASP.NET Core to expose an HTTP API and that it’s set up so that requests are authenticated and
routed to the appropriate MVC controller, making it the entry point for implementing the
workflow:

The details about the requested transfer are captured in a MakeTransfer type, which is sent in the
body of the user’s request. Validation is delegated to a service on which the controller depends,
which implements this interface:

public interface IValidator<T>

{

 bool IsValid(T t);

}

Now to the interesting part, the workflow itself:

public void MakeTransfer([FromBody] MakeTransfer transfer)

{

 if (validator.IsValid(transfer))

 Book(transfer);

}

void Book(MakeTransfer transfer)

 => // actually book the transfer...

That’s the imperative approach of explicit control flow. I’m always very wary of using ifs: a
single if may look harmless, but if you start allowing one if, nothing is keeping you from having
dozens of nested ifs as additional requirements come in, and the complexity that ensues is what
makes applications error-prone and difficult to reason about.

Next, we’ll look at how to use function composition instead.

5.3.2. Refactoring with data flow in mind

Remember that idea we had about data flowing through various functions? Let’s try to think of
the transfer request as data flowing through validation and into the Book method that will perform
the transfer. Figure 5.4 shows how this would look.

Figure 5.4. Viewing validation as a step in the data flow

(118)

There’s a bit of a problem with types: IsValid returns a Boolean, whereas Book requires a
MakeTransfer object, so these two functions don’t compose, as illustrated in figure 5.5.

Figure 5.5. A type mismatch preventing function composition

Furthermore, we need to ensure that the request data flows through the validation and into Book
only if it passes validation. This is where Option can help us: we can use None to represent an
invalid transfer request, and Some<MakeTransfer> for a valid one.

Notice that, in doing so, we’re expanding the meaning we give to Option: we interpret Some not
just to indicate the presence of data, but also the presence of valid data, just like we do in the
smart constructor pattern.

We can now rewrite the controller method like so.

Listing 5.4. Using Option to represent passing/failing validation

public void MakeTransfer([FromBody] MakeTransfer transfer)

 => Some(transfer)

 .Where(validator.IsValid)

 .ForEach(Book);

void Book(MakeTransfer transfer)

 => // actually book the transfer...

We lift the transfer data into an Option and apply the IsValid predicate with Where; this will yield a
None if validation fails, in which case Book won’t be called. In this example, Where is the highly
composable function that allows us to glue everything together. This style may be unfamiliar, but
it’s actually very readable: “Keep the transfer if it’s valid, then book it.”

5.3.3. Composition leads to greater flexibility

Once you have a workflow in place, it becomes easy to make changes such as adding a step to
the workflow. Suppose you wanted to normalize the request before validating it, so that things
like whitespace and casing don’t cause validation to fail.

How would you go about it? You just need to define a function that performs the new step, and
then integrate it into your workflow.

(119)

Listing 5.5. Adding a new step to an existing workflow

More generally, if you have a business workflow, you should aim to express it by composing a
set of functions, where each function represents a step in the workflow, and their composition
represents the workflow itself. Figure 5.6 shows this one-to-one translation from steps in the
workflow to functions in a pipeline.

Figure 5.6. Modeling a linear workflow with function composition

To be precise, in this case we’re not composing these functions directly—as you’ve seen, the
signatures don’t allow this—but rather as arguments to the HOFs defined on Option, as shown in
figure 5.7.

Figure 5.7. The Option API helps us compose existing functions.

Next, let’s see how we can implement the rest of the workflow.

(120)

5.4. An introduction to functional domain modeling

Domain modeling means creating a representation for the entities and behaviors specific to the
business domain in question. In this case, we need a representation for the bank account from
which the transferred funds will be debited. We’ll look at domain modeling in more detail in
chapter 9, but it’s good to see the fundamentals in the current scenario.

Let’s start with a ridiculously simplistic representation of a bank account that just captures the
account balance. This is enough to illustrate the fundamental differences between the OO and
functional approaches. An OO implementation could look like this.

Listing 5.6. In OOP, objects capture both data and behavior

public class Account

{

 public decimal Balance { get; private set; }

 public Account(decimal balance) { Balance = balance; }

 public void Debit(decimal amount)

 {

 if (Balance < amount)

 throw new InvalidOperationException("Insufficient funds");

 Balance -= amount;

 }

}

In OOP, data and behavior live in the same object, and methods in the object can typically
modify the object’s state. By contrast, in FP data is captured with “dumb” data objects while
behavior is encoded in functions, so we’ll separate the two. We’ll use an AccountState object that
only contains state, and a static Account class that will contain functions for interacting with an
account.

More importantly, notice how the preceding implementation of Debit is full of side effects:
exceptions if business validation fails, and state mutation. Instead, we’re going to make Debit
into a pure function. Instead of modifying the existing instance, we’ll return a new AccountState
with the new balance. What about avoiding the debit if the funds on the account are insufficient?
Well, by now you should have learned the trick! Use None to signal an invalid state, and skip the
following computations!

Here’s a functional counterpart to the code in listing 5.6.

Listing 5.7. FP separates data and behavior

(121)

Notice how the OO implementation of Debit in listing 5.6 isn’t composable: it has side effects
and returns void. The functional counterpart in listing 5.7 is completely different: it’s a pure
function, and it returns a value, which can be used as input to the next function in the chain. Next
we’ll integrate this into the end-to-end workflow.

(122)

5.5. An end-to-end server-side workflow

Now that we have the main workflow skeleton and our simple domain model in place, we’re
ready to complete the end-to-end workflow. We still need to implement the Book function, which
should do the following:

Load the account.
If the account has sufficient funds, debit the amount from the account.
Persist the changes to the account.
Wire the funds via the SWIFT network.

Let’s define two services that capture DB access and SWIFT access:

public interface IRepository<T>

{

 Option<T> Get(Guid id);

 void Save(Guid id, T t);

}

interface ISwiftService

{

 void Wire(MakeTransfer transfer, AccountState account);

}

Using these interfaces is still an OO pattern, but let’s stick to it for now (you’ll see how to use
just functions in chapter 7). Note that IRepository.Get returns an Option to acknowledge the fact
that there’s no guarantee that an item will be found for any given Guid.

Here’s the fully implemented controller, including the Book method that was missing until now.

Listing 5.8. Implementation of the end-to-end workflow in the controller

public class MakeTransferController : Controller

{

 IValidator<MakeTransfer> validator;

 IRepository<AccountState> accounts;

 ISwiftService swift;

 public void MakeTransfer([FromBody] MakeTransfer transfer)

 => Some(transfer)

 .Map(Normalize)

 .Where(validator.IsValid)

 .ForEach(Book);

 void Book(MakeTransfer transfer)

 => accounts.Get(transfer.DebitedAccountId)

 .Bind(account => account.Debit(transfer.Amount))

 .ForEach(account =>

 {

 accounts.Save(transfer.DebitedAccountId, account);

 swift.Wire(transfer, account);

 });

}

Let’s look at the newly added Book method. Notice that accounts.Get returns an Option (in case no
account was found with the given ID), and Debit also returns an Option (in case there were
insufficient funds). Therefore, we compose these two operations with Bind. Finally, we use
ForEach to perform the side effects we need: saving the account with the new, lower balance, and
wiring the funds to SWIFT.

(123)

There are a couple of obvious shortcomings in the overall solution. First, we’re effectively using
Option to stop the computation if something goes wrong along the way, but we’re not giving any
feedback to the user as to whether the request was successful or why. In chapter 6, you’ll see
how to remedy this with Either and related structures; this allows you to capture error details
without fundamentally altering the approach shown here.

Another problem is that saving the account and wiring the funds should be done atomically: if
the process fails in the middle, we could have debited the funds without sending them to SWIFT.
Solutions to this issue tend to be infrastructure-specific and aren’t specific to FP.[5] Now that I’ve
come clean about what’s missing, let’s discuss the good bits.

5

This problem is difficult and fairly common in distributed architectures. If you’re storing
the accounts in a database, you could be tempted to open a DB transaction, save the account
within the transaction, wire the funds, and only commit once that’s done. This still leaves
you unprotected if the process dies after wiring the funds but before committing the
transaction. A thorough solution is to atomically create a single “task” representing both
operations, and have a process that performs both and removes the task only when both
have successfully been carried out. This means that any of the operations is potentially
performed more than once, so provisions need to be made for the operations to be
idempotent. A reference text on these sorts of problems and solutions is Enterprise
Integration Patterns by Gregor Hohpe and Bobby Woolf (Addison-Wesley, 2004).

5.5.1. Expressions vs. statements

Something that should stand out when you look at the controller in listing 5.8 is that there are no
if statements, no for statements... In fact, there are practically no statements at all!

One fundamental difference between the functional and imperative style is that imperative code
relies on statements; functional code relies on expressions. For a refresher on how these differ,
see the “Expressions, statements, declarations” sidebar. In essence, expressions have a value;
statements don’t. While expressions such as function calls can have side effects, statements only
have side effects, so they don’t compose.

If you create workflows by composing functions as we have, side effects naturally gravitate
towards the end of the workflow: functions like ForEach don’t have a useful return value, so that’s
where the pipeline ends. This helps to isolate side effects, even visually.

The idea of programming without using statements can seem quite foreign at first, but as the
code in this and previous chapters demonstrates, it’s perfectly feasible in C#. Notice that the only
statements are the two within the last ForEach; this is fine, because we want to have two side
effects—there’s no point hiding that.

I recommend you try coding using just expressions. It doesn’t guarantee good design, but it
certainly promotes better design. (Tip: since C# 6 there’s a giveaway—if you have braces, it’s a
statement.)

Expressions, statements, declarations

Expressions include anything that produces a value, such as these:

(124)

literals, such as 123 or "something"
variables, such as x
invocations, such as "hello".ToUpper() or Math.Sqrt(Math.Abs(n) + m)
operators and operands, such as a || b, b ? x : y or new object()

Expressions can be used wherever a value is expected: for example, as arguments in function
invocations or as return values of a function.

Statements are instructions to the program, such as assignments, conditionals (if/else), loops,
and so on.

Declarations (of classes, methods, fields, and so on) are often considered statements, but for the
purpose of this discussion are best thought of as a category in their own right. Whether you
prefer statements or expressions, declarations are equally necessary, so they’re best left out of the
“statements vs. expressions” argument.

5.5.2. Declarative vs. imperative

When we prefer expressions to statements, our code becomes more declarative. It “declares”
what’s being computed, rather than instructing the computer on what specific operations to carry
out in the computation. In other words, it’s higher-level, and closer to the way in which we
communicate with other human beings.

For example, the top-level workflow in our controller reads as follows:

=> Some(transfer)

 .Map(Normalize)

 .Where(validator.IsValid)

 .ForEach(Book);

Discounting things like Map and Where, which essentially act as glue between the operations, this
reads very much like the verbal, bullet-point definition of the workflow. This means the code is
closer to language, and hence easier to understand and to maintain. Let’s contrast the imperative
and declarative styles in table 5.1.

Table 5.1. Comparing the imperative and declarative styles

Imperative Declarative

Tells the computer what to do; for example,
“Add this item to this list.”

Tells the computer what you want; for example,
“Give me all the items that match a condition.”

Relies mainly on statements. Relies mainly on expressions.

Side effects are ubiquitous. Side effects naturally gravitate toward the end
of the expression evaluation.[a]

Statements can be readily translated into
machine instructions.

There is more indirection (hence, potentially
more optimizations) in the process of translating
expressions to machine instructions.

a

(125)

This is because side-effecting functions don’t normally return a useful value that can be
used in further evaluation.

Another thing worth pointing out is that, because declarative code is higher-level, it’s hard to
look at the implementation and see that it works without the confidence of unit tests. This is
actually a good thing: it’s much better to convince yourself through unit tests than to rely on the
false confidence of looking at the code and seeing that it looks like it’s doing the right thing.

5.5.3. The functional take on layering

The implementation we’ve looked at sheds some light on a natural way to structure applications
with function composition. In any reasonably complex application, we tend to introduce some
form of layering, distinguishing a hierarchy of high- to low-level components, where the highest
level components are entry points into the application (in our example, the controller), and the
lowest are exit points (in our example, the repository and SWIFT service).

Unfortunately, I’ve worked on many projects where layering is more of a curse than a blessing,
as you need to traverse several layers for any operation. This is because there’s a tendency to
structure invocations between layers as in figure 5.8.

Figure 5.8. An unhelpful way to structure interaction between layers

In this approach, there’s an implicit assumption that a layer should only call into an immediately
adjacent layer. This makes the architecture rigid. Furthermore, it means that the whole
implementation will be impure: because the lowest-level components have side effects (they
typically access the DB or external APIs), everything above is also impure—a function that calls
an impure function is itself impure.

In the approach demonstrated in this chapter, the interaction between layers looks more like
figure 5.9.

(126)

Figure 5.9. A top-level workflow composing functions exposed by lower-level components

That is, a higher-level component can depend on any lower-level component, but not vice versa
—this is a more flexible and effective approach to layering. In our example, there’s a top-level
workflow that composes functions exposed by lower-level components.

There are a couple of advantages here:

You get a clear, synthetic overview of the workflow within the top-level component (but
note that this doesn’t preclude you from defining subworkflows within a lower-level
component).
Mid-level components can be pure.

In our example, the interaction between components looks like figure 5.10.

Figure 5.10. Mid-level components can be pure.

(127)

As you can see, the domain representation can (and should!) consist of pure functions only,
because there’s no interaction with lower-level components; there’s only computation of a result
based on inputs. The same could be true of other functionality, such as validation (depending on
what the validation consists of). Therefore, this approach helps you to isolate side effects and
facilitates testing. Because the domain model and other mid-level components are pure functions,
they can easily be tested without the need for mocks.

Exercises

1. Without looking at any code or documentation, write the type of the functions OrderBy,
Take, and Average, which were used to implement AverageEarnings-OfRichestQuartile.

2. Check your answer with the MSDN documentation: https://docs.microsoft.com/en-
us/dotnet/api/system.linq.enumerable. How is Average different?

3. Implement a general purpose Compose function that takes two unary functions and returns
the composition of the two.

Summary

Function composition means combining two or more functions into a new function, and
it’s widely used in FP.
In C#, the extension method syntax allows you to use function composition by chaining
methods.
Functions lend themselves to being composed if they are pure, chainable, and shape-
preserving.
Workflows are sequences of operations that can be effectively expressed in your programs
through function pipelines: one function for each step of the workflow, with the output of
each function fed into the next.
The LINQ library has a rich set of easily composable functions to work with IEnumerables,
and you can use it as inspiration to write your own APIs.
Functional code prefers expressions over statements, unlike imperative code.
Relying on expressions leads to your code becoming more declarative, and hence more
readable.

(128)

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable

Part 2. Becoming functional
In this part we’ll build on the foundations laid so far, and you’ll see how some techniques
introduced in part 1 for limited scenarios can be generalized, enabling you to write entire
applications in a functional style.

Chapter 6 discusses the functional take on validation and error handling.

Chapter 7 shows how you can modularize and compose an application with functions only, using
techniques like partial application and the powerful Aggregate function (fold).

Another core function, Apply, is discussed in chapter 8, which also teaches you about
implementing the LINQ query pattern and compares some functional patterns like applicatives
and monads. Chapter 8 also introduces a technique called property-based testing, which verifies
that your code observes certain properties by throwing random data at it.

Chapter 9 discusses the functional approach to representing state, identity, and change through
immutable data objects and data structures. These principles can be applied not only to in-
memory data, but also at the database level, and this is shown in chapter 10.

By the end of part 2, you’ll have acquired a set of tools enabling you to effectively tackle many
programming tasks using an end-to-end functional approach.

(129)

Chapter 6. Functional error handling
This chapter covers

Representing alternative outcomes with Either
Chaining operations that may fail
Distinguishing business validation from technical errors

Error handling is an important part of our applications, and one aspect in which the functional
and imperative programming styles differ starkly:

Imperative programming uses special statements like throw and try/catch, which disrupt
the normal program flow, thus introducing side effects, as discussed in chapter 2.
Functional programming strives to minimize side effects, so throwing exceptions is
generally avoided. Instead, if an operation can fail, it should return a representation of its
outcome including an indication of success or failure, as well as its result (if successful), or
some error data otherwise. In other words, errors in FP are just payload.

There are lots of problems with the imperative, exception-based approach. It has been said that
throw has similar semantics to goto, and this begs the question of why imperative programmers
have banished goto but not throw.[1] There’s also a lot of confusion around when to use
exceptions and when to use other error-handling techniques. I feel that the functional approach
brings a lot more clarity to the complex area of error handling, and I hope to convince you of this
through the examples in this chapter.

1

In fact, I think throw is much worse than goto. The latter at least jumps to a well-defined
location; with throw, you don’t really know what code will execute next, unless you explore
all possible paths into the code where throw occurs.

We’ll look at how the functional approach can be put into practice, and how you can make
explicit that a function can fail through its signature, by using types that include error
information in their payload. Errors can then be consumed in the calling function just like any
other value.

(130)

6.1. A safer way to represent outcomes

In chapter 3, you saw that you could use Option not just to represent the absence of a value, but
also the absence of a valid value. That is, you can use Some to signal that everything went OK,
and None to signal that something went wrong. In other words, functional error handling can
sometimes be satisfactorily achieved by using the Option type. Here are a couple of examples:

Parsing a number— A function parsing a string representation of a number can return
None to indicate that the given string wasn’t a valid representation for a number.
Retrieving an item from a collection— You can return None to indicate that no suitable
item was found, and use Some to wrap a correctly retrieved value.

In scenarios like these, there’s really only one way for the function to not return a valid result,
and that’s represented with None. Functions that return Option<T>, rather than just T, are
acknowledging in their signature that the operation may fail, and you could take the isSome flag
that indicates the state of the Option (see listing 3.7) as the additional payload that signals success
or failure.

What if there are several ways in which an operation could fail? What if, for instance, the BOC
application receives a complex request, such as a request to make a money transfer? Surely the
user would need to know not only whether the transfer was successfully booked, but also, in case
of failure, the reason(s) for failure.

In such scenarios, Option is too limited, because it doesn’t convey any details about why an
operation has failed. Accordingly, we’ll need a richer way to represent outcomes—one that
includes information about what exactly has gone wrong.

6.1.1. Capturing error details with Either

A classic functional approach to this problem is to use the Either type, which, in the context of an
operation with two possible outcomes, captures details about the outcome that has taken place.
By convention, the two possible outcomes are indicated with Left and Right (as shown in figure
6.1), likening the Either-producing operation to a fork: things can go one way or another.

Figure 6.1. Either represents one of two possible outcomes.

(131)

Although Left and Right can be seen in a neutral light, by far the most common use of Either is to
represent the outcome of an operation that may fail, in which case Left is used to indicate failure
and Right to indicate success. So, remember this:

Right = “all right”
Left = “something wrong”

In this biased acceptation, Either is just like an Option that has been enriched with some data
about the error. An Option can be in the None or Some state, and Either can similarly be in the Left
or Right state, as summarized in table 6.1.

Table 6.1. Option and Either can both represent possible failure

 Failure Success

Option<T> None Some(T)
Either<L, R> Left(L) Right(R)

If Option can be symbolically defined as

Option<T> = None | Some(T)

then Either can similarly be defined like this:

Either<L, R> = Left(L) | Right(R)

Notice that Either has two generic parameters and can be in one of two states:

Left(L) wraps a value of type L, capturing details about the error.
Right(R) wraps a value of type R, representing a successful result.

Let’s see how an Option-based interface may differ from an Either-based one. Imagine you’re
doing some DIY and go to the store to get a tool you need. If the item isn’t available, an Option-
based shopkeeper would just say, “Sorry, it’s not available,” and that’s it. An Either-based
shopkeeper would give you more information, such as, “We’re out of stock until next week,” or
“This product has been discontinued”; you can base your further decisions on this information.

(132)

What about a deceiving shopkeeper who, having run out of stock, will sell you a product that
looks just like the one you’re after, but which will explode in your face when you put it to use?
Well, that’s the imperative, exception-throwing interface.

Because the definition of Either is so similar to Option, it can be implemented using the same
techniques. In my LaYumba.Functional library, I have two generic types, Left<L> and Right<R>, that
wrap a single value, and both are implicitly convertible to Either<L, R>. For convenience, values
of type L and R are also implicitly convertible to Either<L, R>.

You can see the full implementation in the code samples, but I won’t include it here because
there’s nothing new compared to what was discussed in section 3.4.3 about the implementation
of Option. Instead, let’s play around with Either in the REPL. As usual, you need to start by
referencing LaYumba.Functional:

#r "functional-csharp-code\src\LaYumba.Functional\bin\Debug\netstandard1.6\

 LaYumba.Functional.dll"

using LaYumba.Functional;

using static LaYumba.Functional.F;

Now create some Eithers:

That was easy! Now let’s write a function that uses Match to compute a different value depending
on the state of an Either:

(133)

string Render(Either<string, double> val) =>

 val.Match(

 Left: l => $"Invalid value: {l}",

 Right: r => $"The result is: {r}");

Render(Right(12d))

// => "The result is: 12"

Render(Left("oops"))

// => "Invalid value: oops"

Now that you know how to create and consume an Either, let’s look at a slightly more interesting
example. Imagine a function that performs a simple calculation:

f(x, y) → sqrt(x / y)

For the calculation to be performed correctly, we need to ensure that y is non-zero and that the
ratio x/y is non-negative. If one of these conditions isn’t met, we’d like to know which one. So
the calculation returns, let’s say, a double in the happy path, and a string with an error message
otherwise. That means the return of this function should be Either<string, double>—remember,
the successful type is the one on the right. Here’s the implementation.

Listing 6.1. Capturing error details with Either

using static System.Math;

Either<string, double> Calc(double x, double y)

{

 if (y == 0) return "y cannot be 0";

 if (x != 0 && Sign(x) != Sign(y))

 return "x / y cannot be negative";

 return Sqrt(x / y);

}

The signature of Calc clearly declares that it will return a structure wrapping “either a string, or a
double,” and indeed the implementation returns either a string (an error message) or a double
(the result of the computation). In either case, the returned value will be implicitly lifted into an
Either.

Let’s test it out in the REPL:

Calc(3, 0) // => Left("y cannot be 0")

Calc(-3, 3) // => Left("x / y cannot be negative")

Calc(-3, -3) // => Right(1)

Because Either is so similar to Option, you might guess that the core functions you’ve seen in
relation to Option will have counterparts for Either. Let’s find out.

6.1.2. Core functions for working with Either

Like with Option, we can define Map, ForEach, and Bind in terms of Match. The Left case is used to
signal failure, so the computation is skipped in the Left case:

(134)

There are a couple of things to point out here. In all cases, the function is applied only if the
Either is Right.[2] This means that if we think of Either as a fork, then whenever we take the left
path, we go to a dead end.

2

This is what’s called a biased implementation of Either. There are also different, unbiased
implementations of Either that aren’t used to represent error/success disjunctions, but two
equally valid paths. In practice, the biased implementations are much more widely used.

Also notice that when you use Map and Bind, the R type changes. Just as Option<T> is a functor on T,
Either<L, R> is a functor on R, meaning that you can use Map to apply functions to R. The L type,
on the other hand, remains the same.

What about Where? Remember, you can call Where with a predicate and “filter out” the inner value
of an Option if it fails to satisfy the predicate:

Option<int> three = Some(3);

three.Where(i => i % 2 == 0) // => None

three.Where(i => i % 2 != 0) // => Some(3)

With Either, you can’t do that: failure to meet a condition should yield a Left, but because Where
takes a predicate, and a predicate only returns a Boolean, there’s no reasonable value type L with
which you can populate the Left value. It’s probably easier to see if you try to implement Where
for Either:

public static Either<L, R> Where<L, R>

 (this Either<L, R> either, Func<R, bool> predicate)

 => either.Match(

 l => either,

 r => predicate(r)

 : either

 ? /* now what? I don't have an L */);

As you can see, if the Either is Right, but its inner value doesn’t satisfy the predicate, you should
return a Left, but there’s no available value of type L with which you could populate a Left.

You’ve just learned that Where is less general than Map and Bind: it can only be defined for
structures for which a zero value exists (such as an empty sequence for IEnumerable, or None for

(135)

Option). There’s no zero value for Either<L, R> because L is an arbitrary type. You can only cause
an Either to fail by explicitly creating a Left, or by calling Bind with a function that may return a
suitable L value.

You’ll see this in practice in the next example, where I’ll show you an Option-based
implementation and an Either-based one side by side.

6.1.3. Comparing Option and Either

Imagine we’re modeling a recruitment process. We’ll start with an Option-based implementation,
in which Some(Candidate) represents a candidate that has passed the interview process so far,
whereas None represents rejection.

Listing 6.2. An Option-based implementation modeling the recruitment process

Func<Candidate, bool> IsEligible;

Func<Candidate, Option<Candidate>> TechTest;

Func<Candidate, Option<Candidate>> Interview;

Option<Candidate> Recruit(Candidate c)

 => Some(c)

 .Where(IsEligible)

 .Bind(TechTest)

 .Bind(Interview);

The recruitment process consists of a technical test first, and then an interview. Fail the test, and
the interview won’t take place. But even prior to the test, we’ll check that the candidate is
eligible to work. With Option, we can apply the IsEligible predicate with Where so that if the
candidate isn’t eligible, the subsequent steps won’t take place.

Now, imagine that HR isn’t happy to just know whether a candidate has passed or not; they also
want to know details about the reasons for failure because this information allows them to refine
the recruitment process. We can refactor to an Either-based implementation, capturing the
reasons for rejection with a Rejection object. The Right type will be Candidate as before, and the
Left type will be Rejection.

Listing 6.3. An equivalent Either-based implementation

(136)

We now need to be more explicit about failing the IsEligible test, so we turn this predicate into
an Either-returning function, CheckEligibility, providing a suitable Left value (the Rejection) for
when the predicate isn’t passed. We can now compose CheckEligibility into the workflow using
Bind.

Notice that the Either-based implementation is more verbose, and this makes sense, since we
choose Either when we need to be explicit about failure conditions.

(137)

6.2. Chaining operations that may fail

Either lends itself particularly well to representing a chain of operations where any operation
may cause a deviation from the happy path. For example, once every so often, you prepare your
boy- or girl-friend’s favorite dish. The workflow may look like this:

 o WakeUpEarly

 / \

L R ShopForIngredients

 / \

 L R CookRecipe

 / \

 L R EnjoyTogether

At each step of the way, something may go wrong: you could oversleep, you could wake up to
stormy weather that prevents you from getting to the shops, you could get distracted and let
everything burn... In short, only if everything goes well do you get to a happy meal together.

Using Either, we can model the preceding workflow like so.

Listing 6.4. Using Bind to chain several Either-returning functions

Func<Either<Reason, Unit>> WakeUpEarly;

Func<Unit, Either<Reason, Ingredients>> ShopForIngredients;

Func<Ingredients, Either<Reason, Food>> CookRecipe;

Action<Food> EnjoyTogether;

Action<Reason> ComplainAbout;

Action OrderPizza;

void Start()

{

 WakeUpEarly()

 .Bind(ShopForIngredients)

 .Bind(CookRecipe)

 .Match(

 Right: dish => EnjoyTogether(dish),

 Left: reason =>

 {

 ComplainAbout(reason);

 OrderPizza();

 });

}

Remember from the definition of Bind that if the state is Left, the Left value just gets passed
along. So in the preceding listing, when we say ComplainAbout(reason), the reason is whatever

(138)

failed in any of the previous steps: if we failed to wake up, ComplainAbout will receive the reason
for that; likewise if we failed to shop, and so on.

The previous tree-like diagram is a correct logical representation of the workflow; another way
to look at it, closer to the implementation details, is shown in figure 6.2.

Figure 6.2. Chaining Either-returning functions

Each function returns a two-part structure, the Either, and is chained with the next function via
Bind. A workflow obtained by chaining several Either-returning functions can be seen as a two-
track system:[3]

3

In a tutorial on this style of error handling, F# evangelist Scott Wlaschin builds a “railway”
analogy. I encourage you to look at his “Railway Oriented Programming” article and video
conference, available on his site at http://fsharpforfunandprofit.com/rop/.

There’s a main track (the happy path), going from R1 to Rn.
There’s an auxiliary, parallel track, on the Left side.
Once you’re on the Left track, you stay on it until the end of the road.
If you’re on the Right track, with each function application, you will either proceed along
the Right track, or be diverted to the Left track.
Match is the end of the road, where the disjunction of the parallel tracks takes place.

Although the “favorite dish” example is rather frivolous, it’s representative of many
programming scenarios. For example, imagine a stateless server that, upon receiving a request,
must perform the following steps:

1. Validate the request.
2. Load the model from the DB.
3. Make changes to the model.
4. Persist changes.

Any of these operations could potentially fail, and failure at any step should prevent the
workflow from continuing, and the response should include details about the success or failure of
the requested operation.

Next, we’ll look at using Either in such a scenario.

(139)

http://fsharpforfunandprofit.com/rop/

6.3. Validation: a perfect use case for Either

Let’s revisit the scenario of requesting a money transfer, but in this case we’ll address the
simpler scenario in which a client explicitly requests a transfer to be carried out on some future
date.

The application should do the following:

1. Validate the request.
2. Store the transfer details for future execution.
3. Return a response with an indication of success, or details of any failure.

We can model the fact that the operation may fail with Either. If the transfer request is
successfully stored, there’s no meaningful data to return to the client, so the Right type parameter
will be Unit. What should the Left type be?

6.3.1. Choosing a suitable representation for errors

Let’s look at a few types you could use to capture error details. You saw that when applying
functions to Either via Map or Bind, the Right type changes, while the Left type remains the same.
So once you choose a type for Left, this type will remain the same throughout the workflow.

I’ve used string in some of the previous examples, but this seems limiting; you might want to
add more structured details about the errors. What about Exception? It’s a base class that can be
extended with arbitrarily rich subtypes. Here, however, the semantics are wrong: Exception
denotes that something exceptional has occurred. Instead, here we’re coding for errors that are
“business as usual.”

Instead, I’ve included a very simple base Error class, exposing just a Message property. We can
subclass this for specific errors.

Listing 6.5. A base class for representing failure

namespace LaYumba.Functional

{

 public class Error

 {

 public virtual string Message { get; }

 }

}

Although, strictly speaking, the representation of Error is part of the domain, this is a general
enough requirement that I’ve added the type to the functional library. My recommended
approach is to create one subclass for each error type.

For example, here are some error types we’ll need in order to represent some cases of failed
validation.

Listing 6.6. Distinct types capture details about specific errors

namespace Boc.Domain

{

(140)

 public sealed class InvalidBic : Error

 {

 public override string Message { get; }

 = "The beneficiary's BIC/SWIFT code is invalid";

 }

 public sealed class TransferDateIsPast : Error

 {

 public override string Message { get; }

 = "Transfer date cannot be in the past";

 }

}

And, for convenience, we’ll add a static class, Errors, that contains factory functions for creating
specific subclasses of Error:

public static class Errors

{

 public static InvalidBic InvalidBic

 => new InvalidBic();

 public static TransferDateIsPast TransferDateIsPast

 => new TransferDateIsPast();

}

This is a trick that will help us keep the code where the business decisions are made cleaner, as
you’ll see below. It also provides good documentation, because it gives us an overview of all the
specific errors defined for the domain.

6.3.2. Defining an Either-based API

Let’s assume that the details about the transfer request are captured in a data-transfer object of
type BookTransfer: this is what we receive from the client, and it’s the input data for our
workflow. We’ve also established that the workflow should return an Either<Error, Unit>; that is,
nothing of note in case of success, or an Error with details of failure.

That means the main function we need to implement to represent this workflow has type

BookTransfer → Either<Error, Unit>

We’re now ready to introduce a skeleton of the implementation. Notice the preceding signature is
captured in Handle:

The Handle method defines the high-level workflow: first validate, then persist. Both Validate and
Save return an Either to acknowledge that the operation may fail. Also note that the signature of
Validate is Either<Error, BookTransfer>. That is, we need the BookTransfer command on the right
side, so that the transfer data is available and can be piped to Save.

(141)

Next, let’s add some validation.

6.3.3. Adding validation logic

Let’s start by validating a couple of simple conditions about the request:

That the date for the transfer is indeed in the future
That the provided BIC code is in the right format[4]

4

The BIC code is a standard identifier for a bank branch, also known as SWIFT code.

We can have a function perform each validation. The typical scheme will be as follows:

That is, each validator function takes a request as input and returns either the (validated) request
or the appropriate error. (I would normally use the ternary if operator here, but it doesn’t work
well with implicit conversion.)

Each validation function is a world-crossing function (going from a “normal” value,
BookTransfer, to an “elevated” value, Either<Error, BookTransfer>), so we can combine several of
these functions using Bind.

Listing 6.7. Chaining several validation functions with Bind

(142)

In summary, use Either to acknowledge that an operation may fail and Bind to chain several
operations that may fail. But if the application internally uses Either to represent outcomes, how
should it represent outcomes to client applications that communicate with it over some protocol
such as HTTP? This is a question that also applies to Option. Whenever you use these elevated
types, you’ll need to define a translation when communicating with other applications. We’ll
look at this next.

(143)

6.4. Representing outcomes to client applications

You’ve now seen quite a few use cases for using Option and Either. Both types can be seen as
representing outcomes: in the case of Option, None can signify failure; in the case of Either, it’s
Left. We’ve defined Option and Either as C# types, but in this section you’ll see how you can
translate them to the outside world.

Although we’ve defined Match for both types, we’ve used it quite rarely, relying instead on Map,
Bind, and Where to define workflows. Remember, the key difference here is that the latter work
within the abstraction (you start with, say, Option<T>, and end up with an Option<R>). Match, on the
other hand, allows you to leave the abstraction (you start with Option<T> and end up with an R).
See figure 6.3.

Figure 6.3. With Option and Either, Match is used to leave the abstraction.

As a general rule, once you’ve introduced an abstraction like Option, it’s best to stick with it as
long as possible. What does “as long as possible” mean? Ideally, it means that you’ll leave the
abstract world when you cross application boundaries.

It’s good practice to design applications with some separation between the application core,
which contains services and domain logic, and an outer layer containing a set of adapters,
through which your application interacts with the outside world. You can see your application as
an orange, where the skin is composed of a layer of adapters, as shown in figure 6.4.

Figure 6.4. The outer layer of an application consists of adapters.

(144)

Abstractions such as Option and Either are useful within the application core, but they may not
translate well to the message contract expected by the interacting applications. Thus, the outer
layer is where you need to leave the abstraction and translate to the representation expected by
your client applications.

6.4.1. Exposing an Option-like interface

Imagine that within our banking scenario we have an API that, given a “ticker” (an identifier for
a stock or other financial instrument, such as AAPL, GOOG, or MSFT), returns details about the
requested financial instrument. These details could include the market on which the instrument is
traded, the current price level, and so on.

Within the application core, we could have a service that exposes this functionality:

public interface IInstrumentService

{

 Option<InstrumentDetails> GetInstrumentDetails(string ticker);

}

We can’t know whether the string given as ticker actually identifies a valid instrument, so this is
modeled within the application core with Option.

Next, let’s see how we can expose this data to the outer world. We’ll create an API endpoint by
mapping it to a method on a class extending Controller. The controller effectively acts as an
adapter between the application core and the clients consuming the API.

The API returns, let’s say, JSON over HTTP—a format and protocol that doesn’t deal in Options
—so the controller is the last point where we can “translate” our Option into something that’s
supported by that protocol. This is where we’ll use Match. We could implement the controller as
in the following listing.

Listing 6.8. Translating None to status code 404

(145)

In fact, the preceding method body can be written more tersely:

=> getInstrumentDetails(ticker)

 .Match<IActionResult>(

 None: NotFound,

 Some: Ok);

(It could be written even more tersely, without the parameter names.)

Point-free style

This style of omitting the explicit parameter (in our case, result) is sometimes called “point-free”
because the “data points” are omitted. It’s a bit daunting at first, but it’s cleaner once you get
used to it.

Let’s pause and see why we can write this so concisely. Remember, Match expects the following:

A nullary function to invoke if the Option is None
A function accepting the type of the Option’s inner value, to invoke if the Option is Some

Particularized for the current case, where T is InstrumentDetails and the desired result type is
IActionResult, we need functions of these types:

None : () → IActionResult

Some : InstrumentDetails → IActionResult

Here we use two methods defined on the base Controller class:

HttpNotFound—To translate None as a 404 response
Ok—To translate the Option’s inner value to a response with a status code of 200

Let’s look at the types of these methods:

HttpNotFound : () → HttpNotFoundResult

Ok : object → HttpOkObjectResult

The types line up because both HttpOkObjectResult and HttpNotFoundResult implement
IActionResult, and naturally InstrumentDetails is an object.

(146)

You’ve now seen how you can take a workflow modeled with an Option-based interface and
expose it through an HTTP API. Next, let’s see about an Either-based interface.

6.4.2. Exposing an Either-like interface

Just like with Option, once you’ve lifted your value to the elevated world of Either, it’s best to
stay there until the end of the workflow. But all good things must come to an end, so at some
point you’ll need to leave your application domain and expose a representation of your Either to
the external world.

Let’s go back to the banking scenario we looked at in this chapter—that of a request from a
client to book a transfer on a future date. Our service layer returns an Either<Error, Unit> and we
must translate that to, say, JSON over HTTP.

One approach is similar to what we just looked at for Option: we can use HTTP status code 400
to signal that we received a bad request.

Listing 6.9. Translating Left to status code 400

public class BookTransferController : Controller

{

 private IHandler<BookTransfer> transfers;

 [HttpPost, Route("api/transfers/future")]

 public IActionResult BookTransfer([FromBody] BookTransfer request)

 => transfers.Handle(request).Match<IActionResult>(

 Left: BadRequest,

 Right: _ => Ok());

}

This works. The only downside is that the convention of how business validation relates to
HTTP error codes is very shaky. Some people will argue that 400 signals a syntactically
incorrect request—not a semantically incorrect request, as is the case here.

In situations of concurrency, a request that’s valid when the request is made may no longer be
valid when the server receives it (for example, the account balance may have gone down). Does
a 400 convey this?

Instead of trying to figure out which HTTP status code best suits a particular error scenario (after
all, HTTP wasn’t designed with RESTful APIs in mind), another approach is to return a
representation of the outcome in the response. We’ll explore this option next.

6.4.3. Returning a result DTO

This approach involves always returning a successful status code (because, at a low level, the
response was correctly received and processed), along with an arbitrarily rich representation of
the outcome in the response body.

This representation is just a simple data transfer object (DTO) that represents the full result, with
its left and right components.

Listing 6.10. A DTO representing the outcome, to be serialized in the response

public class ResultDto<T>

(147)

{

 public bool Succeeded { get; }

 public bool Failed => !Succeeded;

 public T Data { get; }

 public Error Error { get; }

 public ResultDto(T data) { Succeeded = true; Data = data; }

 public ResultDto(Error error) { Error = error; }

}

This ResultDto is very similar to Either. But unlike Either, whose internal values are only
accessible via higher-order functions, the DTO exposes them for easy serialization and access on
the client side.

We can then define a utility function that translates an Either to a ResultDto:

public static ResultDto<T> ToResult<T>(this Either<Error, T> either)

 => either.Match(

 Left: error => new ResultDto<T>(error),

 Right: data => new ResultDto<T>(data));

Now we can just expose the Result in our API method, as follows.

Listing 6.11. Returning error details as part of a successful response payload

public class BookTransferController : Controller

{

 [HttpPost, Route("api/transfers/book")]

 public ResultDto<Unit> BookTransfer([FromBody] BookTransfer cmd)

 => Handle(cmd).ToResult();

 Either<Error, Unit> Handle(BookTransfer cmd) //...

}

This approach means, overall, less code in your controllers. More importantly, it means you’re
not relying on the idiosyncrasies of the HTTP protocol in your representation of results, but can
instead create the structure that best suits you to represent whatever conditions you choose to see
as Left.

In the end, both approaches are viable and both are used in APIs in the wild. Which approach
you choose has more to do with API design than with functional programming. The point is that
you’ll generally have to make some choices when exposing to client applications outcomes that
you can model with Either in your application.

I’ve illustrated “lowering” values from abstractions through the example of an HTTP API, since
this is such a common requirement, but the concepts don’t change if you expose another kind of
endpoint. In summary, use Match if you’re in the skin of the orange; stay with the juicy
abstractions within the core of the orange.

(148)

6.5. Variations on the Either theme

Either takes us a long way toward functional error handling. In contrast to exceptions, which
cause the program to “jump” out of its normal execution flow and into an exception handling
block in some arbitrary function up the stack, Either maintains the normal program execution
flow and instead returns a representation of the outcome.

So there’s a lot to be liked about Either. There are also some possible objections:

The Left type always stays the same, so how can you compose functions that return an
Either with a different Left type?
Always having to specify two generic arguments makes the code too verbose.
The names Either, Left, and Right are too cryptic. Can’t we have something more user-
friendly?

In this section, I’ll address these concerns and see how they can be mitigated with some
variations on the Either pattern.

6.5.1. Changing between different error representations

As you saw, Map and Bind allow you to change the R type, but not the L type. Although having a
homogeneous representation for errors is preferable, it may not always be possible. What if you
write a library where the L type is always Error, and someone else writes a library where it’s
always string? How can you to integrate the two?

It turns out this can be resolved simply with an overload of Map that allows you to apply a
function to the left value as well as the right one. This overload takes an Either<L, R>, and then
not one but two functions: one of type (L → LL), which will be applied to the left value (if
present), and another one of type (R → RR) to be applied to the right value:

public static Either<LL, RR> Map<L, LL, R, RR>

 (this Either<L, R> either, Func<L, LL> left, Func<R, RR> right)

 => either.Match<Either<LL, RR>>(

 l => Left(left(l)),

 r => Right(right(r)));

This variation of Map allows you to arbitrarily change both types, so that you can interoperate
between functions where the L types are different.[5] Here’s an example:

5

Because there’s no shortage of terminology in FP, functors for which a Map in this form is
defined are called bifunctors, and in languages without method overloading, the function is
called BiMap.

Either<Error, int> Run(double x, double y)

 => Calc(x, y)

 .Map(

 left: msg => Error(msg),

 right: d => d)

 .Bind(ToIntIfWhole);

Either<string, double> Calc(double x, double y) //...

Either<Error, int> ToIntIfWhole(double d) //...

(149)

It’s best to avoid the noise and stick to a consistent representation for errors, but different
representations aren’t a stumbling block.

6.5.2. Specialized versions of Either

Let’s look at the other shortcomings of using Either in C#.

First, having two generic arguments adds noise to the code.[6] For example, imagine you want to
capture multiple validation errors, and for this you choose IEnumerable <Error> as your Left type.
You’d end up with signatures that look like this:

6

You can look at this as a shortcoming of Either, or of C#’s type system. Either is
successfully used in the ML-languages, where types can (nearly) always be inferred, so
even complex generic types don’t add any noise to the code. This is a classic example
showing that although the principles of FP are language-independent, they need to be
adapted based on the strengths and weaknesses of each particular language.

public Either<IEnumerable<Error>, Rates> RefreshRates(string id) //...

You now have to read through three things (Either, IEnumerable, and Error) before you get to the
most meaningful part, the desired return type Rates. Compared to signatures that say nothing
about failure, as we discussed in chapter 3, it seems we’ve fallen into the opposite extreme.

Second, the very names Either, Left, and Right are too abstract. Software development is
complex enough, so we should opt for the most intuitive names possible.

Both issues can be addressed by using more specialized versions of Either that have a fixed type
to represent failure (hence, a single generic parameter), and more user-friendly names. Note that
such variations on Either are common, but not standardized. You’ll find a multitude of different
libraries and tutorials that each have their own minor variations in terminology and behavior.

For this reason, I thought it best to first give you a thorough understanding of Either, which is
ubiquitous and well established in the literature and will allow you to grasp any variations you
may encounter. (You can then choose the representation that serves you best, or even implement
your own type for representing outcomes if you’re so inclined.)

LaYumba.Functional includes the following two variations for representing outcomes:

Validation<T>—You can think of this as an Either that has been particularized to
IEnumerable<Error>:
Validation<T> = Invalid(IEnumerable<Error>) | Valid(T)

Validation is just like an Either where the failure case is fixed to IEnumerable <Error>,
making it possible to capture multiple validation errors.
Exceptional<T>—Here, failure is fixed to System.Exception:
Exceptional<T> = Exception | Success(T)

Exceptional can be used as a bridge between an exception-based API and functional error
handling, as you’ll see in the next example.

(150)

Table 6.2 shows these variations side by side.

Table 6.2. Some particularized versions of Either and their state names

Type Success case Failure case Failure type

Either<L, R> Right Left L
Validation<T> Valid Invalid IEnumerable<Error>
Exceptional<T> Success Exception Exception

These new types have friendlier, more intuitive names than Either, and you’ll see an example of
using them next.

6.5.3. Refactoring to Validation and Exceptional

Let’s go back to the scenario of a user booking a money transfer for future execution. Previously
we modeled the simple workflow that included validation and persistence—both of which could
fail—with Either. Let’s now see how the implementation would change by using the more
specific Validation and Exceptional instead.

A function that performs validation should, naturally, yield a Validation. In our scenario, its type
would be

Validate : BookTransfer → Validation<BookTransfer>

Because Validation is just like Either, particularized to the Error type, the implementation of the
validation functions would be the same as in the previous Either-based implementation, except
for the change in signature. Here’s an example:

As usual, implicit conversion is defined, so in this example you could omit the calls to Valid and
Invalid.

Bridging between an exception-based API and functional error handling

Next, let’s look at persistence. Unlike validation, failure here would indicate a fault in the
infrastructure or configuration, or another technical error. We consider such errors exceptional,[7]

so we can model this with Exceptional:

7

(151)

In this context, exceptional doesn’t necessarily mean “occurring very rarely”; it denotes a
technical error, as opposed to an error from the point of view of the business logic.

Save : BookTransfer → Exceptional<Unit>

The implementation of Save could look something like the following.

Listing 6.12. Translating an Exception-based API to an Exceptional value

Notice that the scope of the try/catch is as small as possible: we want to catch any exceptions
that may be raised when connecting to the database, and immediately translate to the functional
style, wrapping the result in an Exceptional. As usual, implicit conversion will create an
appropriately initialized Exceptional.

Notice how this pattern allows us to go from a third-party exception-throwing API to a functional
API, where errors are handled as payload and the possibility of errors is reflected in the return
type.

Failed validation and technical errors should be handled differently

The nice thing about using Validation and Exceptional is that they have distinct semantic
connotations:

Validation indicates that some business rule has been violated.
Exception denotes an unexpected technical error.

We’ll now look at how using these different representations allows us to handle each case
appropriately. We still need to combine validation and persistence; this is done in Handle here:

(152)

Because Validate returns a Validation, whereas Save returns an Exceptional, we can’t compose
these types with Bind. But that’s OK: we can use Map instead, and end up with the return type
Validation<Exceptional<Unit>>. This is a nested type expressing the fact that we’re combining the
effect of validation (that is, we may get validation errors instead of the desired return value) with
the effect of exception handling (that is, even after validation passes, we may get an exception
instead of the return value).[8]

8

Remember, these are “monadic effects,” not “side effects,” but in FP-speak they’re simply
called “effects.”

As a result, Handle is acknowledging that the operation may fail for business reasons as well as
technical reasons by “stacking” the two monadic effects. Figure 6.5 illustrates how in both cases
we express errors by including them as part of the payload.

Figure 6.5. Errors are treated as part of the returned payload.

To complete the end-to-end scenario, we need only add the entry point. This is where the
controller receives a BookTransfer command from the client, invokes Handle as defined
previously, and translates the resulting Validation<Exceptional<Unit>> into a result to send back to

(153)

the client (see listing 6.13).

Listing 6.13. Different treatment for validation errors and exceptional errors

Here we use two nested calls to Match to first unwrap the value inside the Validation, and then the
value inside the Exceptional:

If validation failed, we send a 400, which will include the full details of the validation
errors, so that the user can address them.
If persistence failed, on the other hand, we don’t want to send the details to the user.
Instead we return a 500 with a more generic error type; this is also a good place to log the
exception.

As you can see, an explicit return type from each of the functions involved allows you to clearly
distinguish and customize how you treat failures related to business rules versus those related to
technical issues.

In summary, Either gives you an explicit, functional way to handle errors without introducing
side effects (unlike throwing/catching exceptions). But as our relatively simple banking scenario
illustrates, using specialized versions of Either, such as Validation and Exceptional, leads to an
even more expressive and readable implementation.

6.5.4. Leaving exceptions behind?

In this chapter you’ve gained a solid understanding of the ideas behind functional error handling.
[9] You may feel this is a radical departure from the exception-based approach, and indeed it is.

9

We’ll revisit error handling in part 3, in the context of laziness and asynchrony, but the
fundamental aspects have all been covered in this chapter.

I mentioned that throwing exceptions disrupts the normal program flow, introducing side effects.

(154)

More pragmatically, it makes your code more difficult to maintain and reason about: if a function
throws an exception, the only way to analyze the implications of this for the application is to
follow all possible code paths into the function, and then look for the first exception handler up
the stack. With functional error handling, errors are just part of the return type of the function, so
you can still reason about the function in isolation.

Having realized the detrimental effects of using exceptions, several younger programming
languages such as Go, Elixir, and Elm have embraced the idea that errors should simply be
treated as values, so that equivalents to the throw and try/catch statements are used only very
rarely (Elixir), or are absent from the language altogether (Go, Elm). The fact that C# includes
exceptions doesn’t mean you need to use them for error handling; instead, you can use functional
error handling within your application, and use adapter functions to convert the outcomes of calls
to exception-based APIs to something like Exceptional, as shown previously.

Are there any cases in which exceptions are still useful? I believe so:

Developer errors— For example, if you’re trying to remove an item from an empty list, or
if you’re passing a null value to a function that requires that value, it’s OK for that
function or for the list implementation to throw an exception. Such exceptions are never
meant to be caught and handled in the calling code; they indicate that the application logic
is wrong.
Configuration errors— For example, if an application relies on a message bus to connect
to other systems and can’t effectively perform anything useful unless connected, failure to
connect to the bus upon startup should result in an exception. The same applies if a critical
piece of configuration, like a database connection, is missing. These exceptions should
only be thrown upon initialization and aren’t meant to be caught (other than possibly in an
outermost, application-wide handler), but should rightly cause the application to crash.

Exercises

1. Write a ToOption extension method to convert an Either into an Option; the left value is
thrown away if present. Then write a ToEither method to convert an Option into an Either,
with a suitable parameter that can be invoked to obtain the appropriate Left value if the
Option is None. (Tip: start by writing the function signatures in arrow notation.)

2. Take a workflow where two or more functions that return an Option are chained using Bind.
Then change the first of the functions to return an Either. This should cause compilation to
fail. Either can be converted into an Option, as you saw in the previous exercise, so write
extension overloads for Bind so that functions returning Either and Option can be chained
with Bind, yielding an Option.

3. Write a function with signature
TryRun : (() → T) → Exceptional<T>

that runs the given function in a try/catch, returning an appropriately populated
Exceptional.

4. Write a function with signature
Safely : ((() → R), (Exception → L)) → Either<L, R>

that runs the given function in a try/catch, returning an appropriately populated Either.

Summary

(155)

Use Either to represent the result of an operation with two different possible outcomes,
typically success or failure. An Either can be in one of two states:

Left indicates failure and contains error information for an unsuccessful operation.
Right indicates success and contains the result of a successful operation.

Interact with Either using the equivalents of the core functions already seen with Option:

Map and Bind apply the mapped/bound function if the Either is in the Right state;
otherwise they just pass along the Left value.
Match works similarly to how it does with Option, allowing you to handle the Right
and Left cases differently.
Where is not readily applicable, so Bind should be used in its stead for filtering, while
providing a suitable Left value.

Either is particularly useful for combining several validation functions with Bind, or, more
generally, for combining several operations, each of which can fail.
Because Either is rather abstract, and because of the syntactic overhead of its two generic
arguments, in practice it’s better to use a particularized version of Either, such as
Validation and Exceptional.
When working with functors and monads, prefer using functions that stay within the
abstraction, like Map and Bind. Use the downward-crossing Match function as little or as late
as possible.

(156)

Chapter 7. Structuring an application with functions
This chapter covers

Partial application and currying
Getting around the limitations of method type inference
Thinking of dependencies on a per-function level
Modularizing and composing an application
Reducing lists to single values

Structuring a complex, real-world application is no easy task. There are entire books written on
the subject, so this chapter by no means aims to provide a comprehensive view. We’ll focus on
the techniques that you can use to modularize and compose an application consisting entirely of
functions, and how the result compares to how this is usually done in OOP.

We’ll get there gradually. First, you’ll need to learn about a classic but fairly low-level functional
technique called partial application. This allows you to write highly general functions whose
behavior is parameterized, and then supply those parameters, obtaining more specialized
functions that have the parameters given so far “baked in.”

We’ll then look at how partial application can be used in practice to first specify configuration
arguments that are available at startup, and purely runtime arguments later, as they’re received.

Finally, we’ll look at how you can take the approach one step further and use partial application
for dependency injection, to the point of composing an entire application out of functions,
without losing any of the granularity or decoupling you’d expect when composing it with
objects.

(157)

7.1. Partial application: supplying arguments piecemeal

Imagine that you’re having your house redecorated. Your interior designer, Ada, calls Fred, her
trusted paint supplier:

Clearly, the shop needs to know both what the customer wants to buy and how much in order to
fulfill the order, and in this case the information was given at different points in time. Why?
Well, it’s Ada’s responsibility to choose the color and brand (she wouldn’t trust Bruno to
remember the exact color and brand she wants). Bruno, on the other hand, has the task of
measuring the surface and calculating the amount of paint required, and of picking it up from the
supplier.

What I’ve just described is a real-life analogy of partial application. In programming, this means
giving a function its input arguments piecemeal. Just as in my real-life example, this has to do
with separation of concerns: it may be best to provide the various arguments that a function
needs at different points in the application lifecycle, and from different components.

Let’s see this in code. The idea here is that you have a function that needs several pieces of
information to do its work (analogous to Fred, the paint supplier). For instance, in the following
listing we have the function greet, which takes a general greeting and a name and produces a
greeting personalized for the given name.

Listing 7.1. A binary function mapped over a list

using Name = System.String;

using Greeting = System.String;

using PersonalizedGreeting = System.String;

Func<Greeting, Name, PersonalizedGreeting> greet

 = (gr, name) => $"{gr}, {name}";

Name[] names = { "Tristan", "Ivan" };

names.Map(g => greet("Hello", g)).ForEach(WriteLine);

// prints: Hello, Tristan

// Hello, Ivan

(158)

Try it in the REPL

If you’ve never used partial application before, it’s really important that you type the examples in
this section into the REPL to get a hands-on feel for how it works.

The using statements at the top of listing 7.1 just allow us to attach some semantic meaning to
specific uses of the string type, thus making the function signatures more meaningful. You could
go the extra mile and define specific types (as discussed in chapter 3), thus ensuring that, say, a
PersonalizedGreeting can’t accidentally be given as input to the greet function. But for the present
discussion, I’m not too worried about enforcing business rules—just about having meaningful,
unequivocal signatures, because we’ll be looking at the signatures a lot. So this is the signature
of greet:

(Greeting, Name) → PersonalizedGreeting

We then have a list of names and map greet over the list to obtain a greeting for each name in the
list. Notice that the greet function is always called with "Hello" as its first argument, whereas the
second argument varies with each name in the list.

This feels slightly odd. We have a single greeting and n names, but we’re repeating that one
greeting n times. Somehow it seems we’re repeating ourselves. Wouldn’t it be better to “fix” the
greeting to be “Hello” outside the scope of Map? How can we express the fact that deciding on
“Hello” as the general greeting that we’ll use for all names in the list is a more general decision
that can be taken first, and that the function passed to Map should only consume the name?

In listing 7.1 we can’t do this because greet expects two arguments, and we’re using normal
function application. That is, we call greet with the two arguments it expects. (It’s called
“application” because we’re applying the function greet to its arguments.)

We can solve this with partial application. The idea is to allow some code to decide on the
general greeting, giving that greeting to greet as its first argument (like how Ada decides on the
color). This will generate a new function with “Hello” already baked in as the greeting to use.
Some other code can then invoke this function with the name of the person to greet.

There are a couple of ways to make this possible. You’ll first see how to write a specific function
in a way that supports partial application, and then how to define a general Apply function that
will enable partial application for any given function.

7.1.1. Manually enabling partial application

One way to supply the arguments independently would be to rewrite the function like so:

Func<Greeting, Func<Name, PersonalizedGreeting>> greetWith

 = gr => name => $"{gr}, {name}";

This new function, greetWith, takes a single argument, the general greeting, and returns a new
function of type Name → Greeting. Notice that when the function is called with its first argument,
gr, this is captured in a closure and is therefore “remembered” until the returned function is
called with the second argument, name. You’d use it like this:

var greetFormally = greetWith("Good evening");

names.Map(greetFormally).ForEach(WriteLine);

(159)

// prints: Good evening, Tristan

// Good evening, Ivan

We’ve achieved our goal of fixing the greeting outside of the scope of Map.

Notice that greet and greetWith rely on the same implementation, but their signatures are
different. Let’s compare them:

greet : (Greeting, Name) → PersonalizedGreeting

greetWith : Greeting → (Name → PersonalizedGreeting)

greetWith is a function that takes a Greeting and returns a function, and this should be clear from
the preceding signature. In fact, arrow notation is right-associative, so the parentheses in the
second case are redundant, and the type of greetWith would normally be written as follows:

greetWith : Greeting → Name → PersonalizedGreeting

greetWith is said to be in curried form; that is, all arguments are supplied one by one via function
invocation (notice there’s no comma-separated list of parameters in the signature).

Again, greet and greetWith rely on the same implementation. What changes is the signature and
the fact that arguments are provided independently and are captured in closures. This is a good
indicator that we should be able to do partial application mechanically, without the need to
rewrite the function, so let’s look at how to do this next.

7.1.2. Generalizing partial application

In the following example you can see the implementation of a general Apply function that
provides a given value as the first argument to a binary and ternary function, respectively:

public static Func<T2, R> Apply<T1, T2, R>

 (this Func<T1, T2, R> f, T1 t1)

 => t2 => f(t1, t2);

public static Func<T2, T3, R> Apply<T1, T2, T3, R>

 (this Func<T1, T2, T3, R> f, T1 t1)

 => (t2, t3) => func(t1, t2, t3);

In the first overload, Apply takes a binary function, partially applies it to the given argument, and
returns a unary function accepting the second argument. As you can see, it’s quite simple: the
supplied input argument, t1, is captured in a closure, yielding a new function that will call the
original function, f, whenever the second parameter is provided.

Notice how expression-bodied methods and the lambda notation give us good syntactic support
to define this sort of function transformation. The second overload does the same with a ternary
function, and similar overloads can be defined for functions of greater arity.

You’ve now learned that you need not manually create a function like greetWith, but could
instead just use Apply to give the original greet function its first argument:

var greetInformally = greet.Apply("Hey");

names.Map(greetInformally).ForEach(WriteLine);

// prints: Hey, Tristan

// Hey, Ivan

So what’s the pattern here? We’re essentially starting with a general function (like greet) and
using partial application to create a specialized version of this function (like greetInformally).

(160)

This is now a unary function that can be passed around, and the code that uses it doesn’t even
need to be aware that this new function was partially applied.

Figure 7.1 graphically summarizes the steps we’ve covered so far.

Figure 7.1. Partial application summary

In summary, partial application is always about going from general to specific. It allows you to
define very general functions and then fine tune their behavior by giving them arguments.
Ultimately, writing such general functions ups the level of abstraction and potentially allows
greater code reuse.

7.1.3. Order of arguments matters

The greet function shows what is generally a good order of arguments: the more general
parameters, which are likely to be applied early in the life of the application, should come first,

(161)

followed by the more specific parameters. We learn to say “Hello” early in life, but we keep
meeting and greeting new people until we’re old.

As a rule of thumb, if you think of a function as an operation, its arguments typically include the
following:

The object(s) that the operation will affect. These are likely to be received late and should
be left to last.
Some options that determine how the function will operate, or dependencies that the
function requires to do its work, These are likely to be determined early and should come
first.

Of course, it’s not always easy to establish the best order for parameters. You’ll shortly see how
you can use partial application even if the order of parameters is wrong for your intended use.

In summary, whenever you have a multi-argument function, and it’s desirable to separate the
responsibilities of supplying the different arguments it takes, you have a good case for using
partial application.

There is, however, one catch that we should iron out before proceeding to more practical uses of
partial application. The catch has to do with type inference, and we’ll tackle this next.

(162)

7.2. Overcoming the quirks of method resolution

So far, we’ve freely used methods, lambdas, and delegates to represent functions. To the
compiler, however, these are all different things, and type inference for methods is not as good as
we’d like it to be.

Let’s first see what happens when things go well, like when we use Option.Map:

Some(9.0).Map(Math.Sqrt) // => 3.0

Here, the name Math.Sqrt identifies a method, and Map expects a delegate of type Func<T, R>. More
precisely, Math.Sqrt identifies a “method group”; because of method overloading, there may be
several methods with the same name. The compiler is smart enough to not only pick the right
overload (in this case, there’s only one), but also to infer the generic types of the Func, so that we
don’t have to specify the type arguments to Map:

Some(9.0).Map<double, double>(Math.Sqrt)

This is all very well and good. It keeps us from having to convert between methods (or,
alternatively, lambdas) and delegates, and from specifying the generic types, given that these can
be inferred from the method signature. Unfortunately, for methods taking two or more
arguments, all this goodness goes away.

Let’s see what happens if we try to rewrite the greet function as a method—here it’s called
GreeterMethod. What we would like to write is this.

Listing 7.2. Type inference fails with multi-argument methods

Here we’ve written the greeter function as a method, and we now want a GreetWith method to
partially apply it to a given greeting. Unfortunately this code doesn’t compile because the name
GreeterMethod identifies a MethodGroup, whereas Apply expects a Func, and the compiler doesn’t
make the inference for us.

Type inference in local functions

C# 7 introduces “local functions”—functions that are declared within the scope of a method—
but they should actually be called “local methods.” Internally they’re implemented as methods
(even though this gives no benefit—you can’t overload them), so in terms of type inference, they
have the same characteristics as normal methods.

If you want to use the generic Apply to supply arguments to a method, you have to use one of the

(163)

following forms.

Listing 7.3. Using multi-argument methods as arguments to HOFs requires messy syntax

I personally find the syntactic noise in both cases unacceptable. Fortunately, these issues are
specific to method resolution. They go away if you use delegates (think Func) instead.

There are different ways to create a delegate.

Listing 7.4. Different ways of obtaining a delegate instance

Let’s briefly discuss these options. Declaring a delegate field would seem the most natural
option. Unfortunately it’s not very powerful. For example, if you combine declaration and
initialization, as shown in listing 7.4, you can’t reference any instance variables, like separator,
in the delegate body.

This problem can be overcome by using a property instead. In the class exposing the delegate,
this amounts to just replacing = with => to declare a getter-only property, and this is completely
transparent to client code. But the most powerful way is to have a factory method: a method
that’s there just to create the delegate you want. The big difference here is that you can also have
generic parameters, which isn’t possible with fields or properties.

(164)

Whichever way you obtain a delegate instance, type resolution will work fine, so that in all cases
you can supply the first argument like so:

GreeterField.Apply("Hi");

GreeterProperty.Apply("Hi");

GreeterFactory<Name>().Apply("Hi");

The takeaway from this section is that if you want to use HOFs that take multi-argument
functions as arguments, it’s sometimes best to move away from using methods and write Funcs
instead—or methods that return Funcs. While less idiomatic than methods, Funcs save you the
syntactic overhead of explicitly specifying type arguments, making the code much more
readable.

Now that you know about partial application, let’s move on to a related concept: currying. It’s a
technique that assumes and arguably simplifies partial application.

(165)

7.3. Curried functions: optimized for partial application

Named after mathematician Haskell Curry, currying is the process of transforming an n-ary
function f that takes arguments t1, t2, ..., tn into a unary function that takes t1 and yields a new
function that takest2, and so on, ultimately returning the same result as f once the arguments have
all been given.

In other words, an n-ary function with signature

(T1, T2, ..., Tn) → R

when curried, has signature

T1 → T2 → ... → Tn → R

You’ve seen an example of this in the first section of this chapter:

Func<Greeting, Name, PersonalizedGreeting> greet

 = (gr, name) => $"{gr}, {name}";

Func<Greeting, Func<Name, PersonalizedGreeting>> greetWith

 = gr => name => $"{gr}, {name}";

I mentioned that greetWith is like greet, but in curried form. Indeed, compare the signatures:

greet : (Greeting, Name) → PersonalizedGreeting

greetWith : Greeting → Name → PersonalizedGreeting

This means that you could call the curried greetWith function like so:

greetWith("hello")("world") // => "hello, world"

This is two function invocations, and it’s effectively the same as calling greet with two
arguments. Of course, if you’re going to pass in all the parameters at the same time, this is fairly
pointless. But it becomes useful when you’re interested in partial application.

If a function is curried, partial application is achieved simply by invoking the function:

var greetFormally = greetWith("Good evening");

names.Map(greetFormally).ForEach(WriteLine);

// prints: Good evening, Tristan

// Good evening, Ivan

A function can be written in curried form, like greetWith here, and this is called manual currying.
Alternatively, it’s possible to define generic functions that will take an n-ary function and curry
it. For binary and ternary functions, Curry looks like this:

public static Func<T1, Func<T2, R>> Curry<T1, T2, R>

 (this Func<T1, T2, R> func)

 => t1 => t2 => func(t1, t2);

public static Func<T1, Func<T2, Func<T3, R>>> Curry<T1, T2, T3, R>

 (this Func<T1, T2, T3, R> func)

 => t1 => t2 => t3 => func(t1, t2, t3);

Similar overloads can be defined for functions of other arities. As an exercise, write the
signatures of the preceding functions in arrow notation.

(166)

Let’s look at how we could use such a generic Curry function to curry the greet function:

var greetWith = greet.Curry();

var greetNostalgically = greetWith("Arrivederci");

names.Map(greetNostalgically).ForEach(WriteLine);

// prints: Arrivederci, Tristan

// Arrivederci, Ivan

Of course, if you want to use the generic Curry function, the same caveats about method
resolution apply as with Apply.

Partial application and currying are closely related yet distinct concepts, and this is often
confusing when you’re introduced to them. Let’s spell out the differences:

Partial application— You give a function fewer arguments than the function expects,
obtaining a function that’s particularized with the values of the arguments given so far.
Currying— You don’t give any arguments; you just transform an n-ary function into a
unary function, to which arguments can be successively given to eventually get the same
result as the original function.

As you can see, currying doesn’t really do anything; rather, it “optimizes” a function for partial
application. You can do partial application without currying, as we’ve done previously in this
chapter, with the use of the generic Apply functions. On the other hand, currying by itself is
pointless: you curry a function (or write a function in curried form) so that you can more easily
use partial application.

Partial application is so commonly used in FP that in many functional languages all functions are
curried by default. For this reason, function signatures in arrow notation are given in curried
form in the FP literature, like this:

T1 → T2 → ... → Tn → R

In the rest of the book, I’ll always use the curried notation, even for functions that aren’t in fact
curried.

Even though functions aren’t curried by default in C#, you can still take advantage of partial
application, allowing you to write highly general—and hence widely reusable—functions by
parameterizing their behavior, and then use partial application to create the more specific
functions that you’ll require from time to time.

As you’ve seen so far, you can achieve this in different ways:

By writing functions in curried form
By currying functions with Curry, and then invoking the curried function with subsequent
arguments
By supplying arguments one by one with Apply

Which technique you use is a matter of taste, although I personally find that using Apply is the
most intuitive.

(167)

7.4. Creating a partial-application-friendly API

Now that you’ve seen the basic mechanism of partial application, and how to work around poor
type inference by using Funcs instead of methods, we can move on to a more complex scenario,
in which we’ll use a third party library and realistic real-world requirements.

One good scenario for partial application is when a function requires some configuration that’s
available at startup and doesn’t change, along with more transient arguments that could vary with
every invocation. In such cases, a bootstrapping component can supply the configuration
arguments, obtaining a specialized function that only expects invocation-specific arguments.
This can then be given to the final consumer of the functionality, which is thus freed from having
to know anything about configuration.

In this section, we’ll look at such an example: that of accessing a SQL database. Imagine an
application that, like most, needs to perform a number of queries using different parameters to
retrieve different kinds of data from a database.

Let’s think about this in terms of partial application:

Imagine a very general function for retrieving data.
It can be particularized to query a specific database.
It can be further particularized to retrieve objects of a given type.
It can be further particularized with a given query and parameters.

Let’s explore this through a simple example: imagine we want to be able to load an Employee by
ID, or to search for Employees by last name. We’d need to implement functions of these types:

lookupEmployee : Guid → Option<Employee>

findEmployeesByLastName : string → IEnumerable<Employee>

Implementing these functions is our high-level goal. At a low level, we’re going to use the
Dapper library to query a SQL Server database.[1] For retrieving data, Dapper exposes the Query
method with the following signature:

1

Dapper is a lightweight ORM that has gained a lot of popularity for being fast and simple to
use (we used it first in chapter 1). It’s available on GitHub at
https://github.com/StackExchange/dapper-dot-net and you can find more documentation
there.

public static IEnumerable<T> Query<T>

 (this IDbConnection conn

 , string sqlQuery

 , object param = null

 , SqlTransaction tran = null

 , bool buffered = true)

Table 7.1 lists the arguments we need to provide when calling Query, including the generic
parameter T. We won’t worry about the remaining parameters, as the default values are fine for
our purposes.

Table 7.1. Arguments to Dapper’s Query method

(168)

https://github.com/StackExchange/dapper-dot-net

T The type that should be populated from the data returned by the query. In our
case, this will be Employee—Dapper automatically maps columns to fields.

conn
The connection to the database. (Notice that Query is an extension method on
the connection, but that doesn’t matter as far as partial application is
concerned.)

sqlQuery This is a template for the SQL query you want to execute, such as "SELECT *
FROM EMPLOYEES WHERE ID = @Id"—notice the @Id placeholder.

param

An object whose properties will be used to populate the placeholders in the
sqlQuery. For instance, the preceding query will need the corresponding param
object to include a field called Id, whose value will be evaluated and rendered
in the sqlQuery instead of @Id.

This is a great example of order of parameters, because the connection and the SQL query can be
applied as part of the application setup, whereas the param object will be specific to each call to
Query. Right?

Err... well, actually, wrong! SQL connections are lightweight objects and should be obtained and
disposed of whenever a query is performed. In fact, as you may remember from chapter 1, the
standard use of Dapper’s API follows this pattern:

using (var conn = new SqlConnection(connString))

{

 conn.Open();

 var result = conn.Query("SELECT 1");

}

This means our first parameter, the connection, is less general than the second parameter, the
SQL template. But all is not lost. Remember, if you don’t like the API you have, you can change
it! That’s what adapter functions are for.[2] Next, we’ll write an API that better supports partial
application in order to create specialized functions that retrieve the data we’re interested in.

2

We discussed adapter functions in chapter 1: if you don’t like the signature of a function,
you can change it by defining a function that calls another and exposes an interface better
suited to your needs.

7.4.1. Types as documentation

The most general parameter for reading data is the connection string. Many applications connect
to a single database, so that the connection string never changes throughout the life of the
application, and it can be read from configuration once and for all when the application starts up.

Let’s apply an idea introduced in chapter 3—namely, that we can use types to make our code
more expressive—and create a dedicated type for connection strings.

Listing 7.5. A custom type for connection strings

(169)

Whenever a string is not just a string, but a DB connection string, we’ll wrap it in a
ConnectionString. This can be done trivially through implicit conversion.

For example, on startup we can populate it from configuration like so:

ConnectionString connString = configuration

 .GetSection("ConnectionString").Value;

The same thinking applies to the SQL template, so I’ve also defined a SqlTemplate type along the
same lines. Most strongly typed functional languages let you define custom types in terms of
built-in types with a one-liner like this:

type ConnectionString = string

In C#, it’s a bit more laborious but still worth the effort. First, it makes your function signatures
more intention-revealing: you’re using types to document what your function does. For example,
a function can declare that it depends on a connection string as follows.

Listing 7.6. Function signatures are more explicit when using custom types

public Option<Employee> lookupEmployee

 (ConnectionString conn, Guid id) => //...

This is much more explicit than depending on a string.

The second benefit is that you can now define extension methods on ConnectionString, which
wouldn’t make sense on string. You’ll see this next.

7.4.2. Particularizing the data access function

Now that we’ve looked at representing and acquiring a connection string, let’s look at what’s
next, from general to specific:

The type of data we want to retrieve, such as Employee
The SQL query template, such as "SELECT * FROM EMPLOYEES WHERE ID = @Id"
The param object that will be used to render the SQL template, such as new { Id = "123" }

Now comes the crux of the solution. We can define an extension method on Connection-String
that takes the parameters we need.

Listing 7.7. An adapter function that’s better suited for partial application

(170)

using static ConnectionHelper;

public static class ConnectionStringExt

{

 public static Func<SqlTemplate, object, IEnumerable<T>>

 Query<T>(this ConnectionString connString)

 => (sql, param)

 => Connect(connString, conn => conn.Query<T>(sql, param));

}

Notice that we’re relying on ConnectionHelper.Connect, which we implemented in chapter 1, and
which internally takes care of opening and disposing the connection. It doesn’t matter if you
don’t remember the implementation details; just notice that here the general, non-changing
connection string is the first parameter, whereas the connection object itself is short-lived and
will be created with every query.

This is the signature of the preceding method:

ConnectionString → (SqlTemplate, object) → IEnumerable<T>

That is, once we provide a connection string, we get a function that’s still waiting for two more
parameters before returning a list of retrieved entities. Also notice that defining Query as an
extension method is a bit of a trick that allows us to specify the connection string before the type
we’re querying. It’s not otherwise possible to “defer” the resolution of a method’s type
arguments.

This definition of Query is a thin shim on top of Dapper’s Query function. It provides a partial-
application friendly API, for two reasons:

Arguments this time truly go from general to specific.
Supplying the first argument yields a Func, which resolves the issues of type inference
when applying subsequent arguments.

We can now supply arguments piecemeal to get the functions we set out to define.

Listing 7.8. Supplying arguments to get a function of the desired signature

(171)

Here we define queryEmployees by parameterizing the previously discussed Query method to use a
specific connection string and to retrieve Employees. It’s still open to further parameterization, so
we supply two different SqlTemplates to obtain queryById and queryByLastName.

We now have two unary functions that expect a param object (which wraps values that will be
used to replace the placeholder in the SqlTemplate). All that’s left to do is to define lookupEmployee
and findEmployeesByLastName with the signature we set out to expose at the beginning of the
section. These just act as adapter functions that translate their input argument to a suitably
populated param object.

Notice how we started with an extremely general function for running any query against any
SQL database (which was simply an adapter on top of Dapper’s Query method, to give us a
better-suited API), and we ended up with highly specialized functions.

(172)

7.5. Modularizing and composing an application

As applications grow, we need to modularize them and break them down into components. For
example, in chapter 6 you saw an end-to-end example of handling a request to book a transfer.
We put all the code in the controller, and by the end the list of members in the controller looked
like this.

Listing 7.9. A controller with too many responsibilities?

public class BookTransferController : Controller

{

 DateTime now;

 static readonly Regex regex = new Regex("^[A-Z]{6}[A-Z1-9]{5}$");

 string connString;

 ILogger<BookTransferController> logger;

 public IActionResult BookTransfer([FromBody] BookTransfer request)

 IActionResult OnFaulted(Exception ex)

 Validation<Exceptional<Unit>> Handle(BookTransfer request)

 Validation<BookTransfer> Validate(BookTransfer cmd)

 Validation<BookTransfer> ValidateBic(BookTransfer cmd)

 Validation<BookTransfer> ValidateDate(BookTransfer cmd)

 Exceptional<Unit> Save(BookTransfer transfer)

}

If this were a real-world banking application, you’d have not two, but dozens of rules for
checking the validity of the transfer request. You’d also have functionality to do with identity
and session management, instrumentation, and so on. In short, the controller would quickly
become too big, and you’d need to break it down into separate components with more discrete
responsibilities. This makes your code more modular and more manageable.

The other big drive for modularity is code reuse: logic for, say, session management or
authorization could be required by several controllers and should therefore be placed in a
separate component. Once you’ve broken up an application into components, you need to
compose it back together, so that all required components can collaborate at runtime.

In this section, we’ll look at how to deal with modularity, and how the OO and functional
approaches differ in this respect. We’ll illustrate this by refactoring BookTransferController.

7.5.1. Modularity in OOP

Modularity in OOP is usually obtained by assigning responsibilities to different objects, and
capturing these responsibilities with interfaces. For instance, we might define an IValidator
interface for validation and an IRepository for persistence.

Listing 7.10. Interfaces in OOP capture the components’ responsibilities

public interface IValidator<T>

{

 Validation<T> Validate(T request);

}

public interface IRepository<T>

(173)

{

 Option<T> Lookup(Guid id);

 Exceptional<Unit> Save(T entity);

}

The controller would then depend on these interfaces in order to do its work, as shown in figure
7.2.

Figure 7.2. A higher-level component consumes lower-level components via interfaces.

This follows a pattern called dependency inversion, according to which a higher-level component
(such as the controller) doesn’t consume lower-level components directly, but rather through
abstractions, which is usually understood to mean interfaces that the lower-level components
(such as the validators and repository) implement.[3] There are a couple of benefits to this
approach:

3

Note that there’s a difference between dependency injection and dependency inversion.
Dependency injection is far more general: it just means you’re injecting something that a
class, method, or function requires. For example, if you inject a concrete implementation, a
primitive value, or a configuration object, you’re using dependency injection, but not
dependency inversion. Dependency inversion relies on dependency injection, but the
opposite is not true.

Decoupling— You could swap out the repository implementation (changing it from
writing to a database to writing to a queue) and this wouldn’t impact the controller. You’d

(174)

only need to change how the two are wired up. (This is usually defined in some
bootstrapping logic.)
Testability— You can unit-test the handler without hitting the database, by injecting a fake
IRepository.

There’s also a rather high cost associated with dependency inversion:

There’s an explosion in the number of interfaces, adding boilerplate and making the code
difficult to navigate.
The bootstrapping logic to compose the application is often not trivial.
Building fake implementations for testability can be complex.

To manage this extra complexity, third-party frameworks are often used; namely IoC containers
and mocking frameworks. If we follow this approach, the implementation of the controller ends
up looking like this.

Listing 7.11. An implementation that’s functional in the small and OO in the large

You could say that the preceding implementation is “functional in the small and OO in the
large.” The main components (controller, validator, repository) are indeed objects, and the
program behavior is encoded in methods on these objects. On the other hand, many functional
concepts are then used in the implementation of the methods and in defining their signatures.

This approach of using functional techniques within an overall OO software architecture is a
perfectly valid way to integrate FP with OOP. It’s also possible to push the functional approach,
so that all behavior is captured in functions. You’ll see this next.

7.5.2. Modularity in FP

(175)

If the fundamental units of OOP are objects, in FP they’re functions. Modularity in FP is
achieved by assigning responsibilities to functions, and composition by combining functions. In
a functional approach, we don’t define interfaces, because function signatures already provide all
the interface we need.

For instance, in chapter 2 you saw that a validator class that needs to know the current time
doesn’t need to depend on a “service” object, but can just depend on a function that returns the
current time.

Listing 7.12. Injecting functions as dependencies

public class DateNotPast : IValidator<BookTransfer>

{

 Func<DateTime> clock;

 public DateNotPastValidator(Func<DateTime> clock) { this.clock = clock; }

 public Validation<BookTransfer> Validate(BookTransfer cmd)

 => cmd.Date.Date < clock().Date

 ? Errors.TransferDateIsPast

 : Valid(cmd);

}

After all, what is a clock if not a function that you can invoke to get the current time? But let’s
take this one step further: why would you even need the IValidator interface in the first place?
After all, what is a validator, if not a function that you can call to find out if a given object is
valid? Let’s instead use a delegate to represent validation:

// T → Validation<T>

public delegate Validation<T> Validator<T>(T t);

If we follow this approach, BookTransferController depends not on an IValidator object, but on a
Validator function. And to implement a Validator, you don’t even need to have an object and to
store dependencies as fields; instead, dependencies can be passed as function arguments.

Listing 7.13. Dependencies can be passed as arguments to a function

public static Validator<BookTransfer> DateNotPast(Func<DateTime> clock)

 => cmd

 => cmd.Date.Date < clock().Date

 ? Errors.TransferDateIsPast

 : Valid(cmd);

Here, DateNotPast is a HOF that takes a function clock (the dependency it needs in order to know
the current date) and returns a function of type Validator. Notice how this approach spares you
the whole ceremony of creating interfaces, injecting them in the constructor, and storing them in
fields.

Let’s see how you would create a Validator. When bootstrapping the application, you’d give
DateNotPast a function that reads from the system clock:

Validator<BookTransfer> val = DateNotPast(() => DateTime.UtcNow());

For testing purposes, however, you can provide a clock that returns a constant date:

var uut = DateNotPast(() => new DateTime(2020, 20, 10));

Notice that this is in fact partial application: DateNotPast is a binary function (in curried form)
that needs a clock and a command to compute its result. You supply the first argument when

(176)

composing the application (or in the arrange phase of a unit test), and the second argument when
actually processing the received request (or in the act phase of a unit test).

Apart from the validator, BookTransferController also needs a dependency to persist the
BookTransfer request data. If we’re going to use functions, we can represent this with the
following signature:

BookTransfer → Exceptional<Unit>

Again, we can create such a function by starting with a very general function that writes to the
DB, with this signature:

TryExecute : ConnectionString → SqlTemplate → object → Exceptional<Unit>

We can then parameterize it with a connection string from configuration and a SQL template
with the command we want to execute. This is very similar to the code you saw in section 7.3, so
I’ll omit the full details here. Our controller implementation will now look like this:

public class BookTransferController : Controller

{

 Validator<BookTransfer> validate;

 Func<BookTransfer, Exceptional<Unit>> save;

 [HttpPut, Route("api/transfers/book")]

 public IActionResult BookTransfer([FromBody] BookTransfer cmd)

 => validate(cmd).Map(save).Match(//...

}

Of course, if we take this approach to its logical conclusion, we should question why we need a
controller class at all, when all the logic we’re using could be captured in a function of this type:

BookTransfer → IActionResult

Indeed, we could define such a function outside the scope of a controller and configure the
ASP.NET request pipeline to run it when requests are received that match the associated route.[4]

I’m not going to show this refactoring here, both in the interest of space, and also because
ASP.NET doesn’t currently offer very good support for this style of handling HTTP requests,[5]

so using a controller method as an entry point is preferable in most cases.

4

For a better understanding of ASP.NET Core, the application pipeline, and how this can be
configured, see https://docs.asp.net/en/latest/fundamentals/startup.html.

5

Namely, you have to handle low-level details, like serializing the request and response body
and setting the status code of the response. When using MVC controllers, these low-level
details are taken care of.

7.5.3. Comparing the two approaches

In the implementation just shown, all the controller’s dependencies are functions. Notice that
with this approach, you still have the benefits associated with dependency inversion:

Decoupling— The controller knows nothing about the implementation details of the

(177)

https://docs.asp.net/en/latest/fundamentals/startup.html

functions it consumes.
Testability— When testing a controller method, you can just pass it functions that return a
predictable result.

You also mitigate some of the problems associated with dependency inversion in its OOP
version:

You don’t need to define any interfaces.
This makes testing easier, because you don’t need to set up fakes.

For example, a test for the use case we developed in this section could look like this.

Listing 7.14. When dependencies are functions, unit tests can be written without fakes

So far, the functional approach seems preferable. There’s also another difference to point out. In
the OO implementation (listing 7.10), the controller depended on an IRepository interface
defined as follows:

public interface IRepository<T>

{

 Option<T> Lookup(Guid id);

 Exceptional<Unit> Save(T entity);

}

But notice that the controller only uses the Save method. This violates the interface segregation
principle (ISP), which states that clients shouldn’t depend on methods they don’t use. The idea is
that just because you’re trusting your 13-year-old son with your house keys, that doesn’t mean he
should have your car keys as well. The IRepository interface should actually be broken up into
two single-method interfaces, and the controller should depend on a smaller interface, like this:

public interface ISaveToRepository<T>

{

 Exceptional<Unit> Save(T entity);

}

This further increases the number of interfaces in the application. If you push the ISP hard
enough, you’ll end up with a prevalence of single-method interfaces that convey the same
information as a function signature, ultimately making it simpler to just inject functions, as
you’ve seen in the functional approach.

Of course, if the controller did require both a function to read and write, then in the functional
style we’d have to inject two functions, increasing the number of dependencies. As usual, the
functional style is more explicit.

(178)

7.5.4. Composing the application

Finally, let’s see how all the pieces are wired up. This is an ASP.NET application, so the
bootstrapping logic should be defined in an IControllerActivator, which the framework calls
whenever a request is received that should be routed to the controller.

Listing 7.15. Composing the services required to fulfill the BookTransfer request

Some of this code is ASP.NET-specific, and configuring another type of application, like a
console application or a Windows service may be easier. The interesting bit is the
ConfigureBookTransferController method, where you compose the dependencies required by the
controller with partial application.

There’s one last thing left. Notice that you’re passing it a single validator that validates that the
date is OK. But what you really need is a validator that will ensure that many validation rules
(each represented by a specific function) are satisfied.

In OOP, you could use a composite validator that implements IValidator and internally uses a list
of specific IValidators. But we want to do this in a functional style and have a Validator function
that will internally combine the rules of many Validators. We’ll look at this next, but in order to
do so, we must first take a step back and look at a general pattern for reducing a list of values to a
single value.

(179)

7.6. Reducing a list to a single value

Reducing a list of values into a single value is a common operation, but one we haven’t
discussed so far. In FP-speak, this operation is called fold or reduce, and these are the names
you’ll encounter in most languages or libraries and in the FP literature. Characteristically, LINQ
uses a different name: Aggregate. If you’re already familiar with Aggregate, you can skip the next
subsection.

7.6.1. LINQ’s Aggregate method

Note that most of the functions we’ve used so far with IEnumerable also return an IEnumerable. For
example, Map takes a list of n things and returns another list of n things, possibly of a different
type. Where and Bind also stay within the abstraction; that is, they take an IEnumerable and return
an IEnumerable, although the size of the list or the type of the elements may vary.

Aggregate is different from these functions in that it takes a list of n things and returns exactly one
thing (just like the SQL aggregate functions COUNT, SUM, and AVERAGE, which you may be familiar
with).

Given an IEnumerable<T>, Aggregate takes an initial value, called accumulator, and a reducer
function—a binary function accepting the accumulator and an element in the list, and returning
the new value for the accumulator. Aggregate then traverses the list, applying the function to the
current value of the accumulator and each element in the list.

For example, you could have a list of lemons and aggregate it into a glass of lemon juice. The
accumulator would be an empty glass, and this is what you get back if the list of lemons is
empty. The reducer function takes a glass and a single lemon, and returns a glass with the lemon
squeezed into it. Given these arguments, Aggregate traverses the list, squeezing each lemon into
the glass, finally returning the glass with juice from all the lemons.

The signature for Aggregate is

(IEnumerable<T>, Acc, ((Acc, T) → Acc)) → Acc

Figure 7.3 shows it graphically. If the list is empty, Aggregate just returns the given accumulator,
acc. If it contains one item, t0, it will return the result of applying f to acc and t0; let’s call this
value acc1. If it contains more items, it will compute acc1 and then apply f to acc1 and t1 to
obtain acc2, and so on, finally returning accN as a result. Acc can be seen as an initial value, on
top of which all values in the list are applied, using the given function.

Figure 7.3. Reducing a list to a single value with Aggregate

(180)

The Sum function (available in its own right in LINQ) is a special case of Aggregate. What’s the
sum of all the numbers in an empty list? Naturally, 0! So that’s our accumulator value. The
binary function is just addition, so we can express Sum as follows.

Listing 7.16. Sum as a special case of Aggregate

Range(1, 5).Aggregate(0, (acc, i) => acc + i) // => 15

Notice that this expands to the following:

((((0 + 1) + 2) + 3) + 4) + 5

More generally, ts.Aggregate(acc, f) expands to

f(f(f(f(acc, t0), t1), t2), ... tn)

Count can also be seen as a special case of Aggregate:

Range(1, 5).Aggregate(0, (count, _) => count + 1) // => 5

Notice that the type of the accumulator isn’t necessarily the type of the list items. For example,
let’s say we have a list of things, and we want to add them to a tree. The type in our list would
be, say, T, and the type of the accumulator would be Tree<T>. We could start with an empty tree
as accumulator and add each item as we traverse the list.

Listing 7.17. Using Aggregate to create a tree of all items in a list

Range(1, 5).Aggregate(Tree<int>.Empty, (tree, i) => tree.Insert(i))

In this example, I’m assuming that tree.Insert(i) returns a tree with the newly inserted value.

Aggregate is such a powerful method that it’s possible to implement Map, Where, and Bind in terms
of Aggregate—something I suggest as an exercise.

There’s also a less general overload that doesn’t take an accumulator argument, but uses the first
element of the list as accumulator. The signature for this overload is

(IEnumerable<T>, ((T, T) → T)) → T

When using this overload, the result type is the same as the type of the elements in the list, and
the list can’t be empty.

7.6.2. Aggregating validation results

(181)

Now that you know how to reduce a list of values to a single value, let’s apply this knowledge
and see how we can “reduce” a list of validators to a single validator. To do this, we’ll need to
implement a function with type

IEnumerable<Validator<T>> → Validator<T>

Notice that, because Validator is itself a function type, the preceding type expands to this:

IEnumerable<T → Validation<T>> → T → Validation<T>

First of all, we need to decide how we want the combined validation to work:

Fail fast— If validation should be optimized for efficiency, the combined validation
should fail as soon as one validator fails, thus minimizing the use of resources. This is a
good approach if you’re validating a request made programmatically from an application.
Harvest errors— You may want to identify all the rules that have been violated, so that
they can be fixed prior to making another request. This is a better approach when
validating a request made by a user through a form.

The fail-fast strategy is easier to implement: every validator returns a Validation, and Validation
exposes a Bind function that only applies the bound function if the state is Valid (just like Option
and Either), so we can use Aggregate to traverse the list of validators, and Bind each validator to
the running result.

Listing 7.18. Using Aggregate and Bind to apply all validation in a sequence

public static Validator<T> FailFast<T>

 (IEnumerable<Validator<T>> validators)

 => t

 => validators.Aggregate(Valid(t)

 , (acc, validator) => acc.Bind(_ => validator(t)));

Notice that the FailFast function takes a list of Validators and returns a Validator: a function that
expects an object of type T to validate. Upon receiving the validand, t, it traverses the list of
validators using Valid(t) as accumulator (that is, if the list of validators is empty, then t is valid),
and applies each validator in the list to the accumulator with Bind.

Conceptually, the call to Aggregate expands as follows:

Valid(t)

 .Bind(validators[0]))

 .Bind(validators[1]))

 ...

 .Bind(validators[n - 1]));

Because of how Bind is defined for Validation, whenever a validator fails, the subsequent
validators will be skipped, and the whole validation fails.

Not all validation is equally expensive. For instance, validating that the BIC code is well formed
with a regular expression (as shown in listing 6.7) is very cheap. Suppose that you also need to
ensure that the given BIC code identifies an existing bank branch. This might involve a DB
lookup or a remote call to a service with a list of valid codes, which is clearly more expensive.

To ensure that overall validation is efficient, you need to order the list of validators accordingly.
In this case, you’d need to apply the (cheap) regular expression validation first, and only then the
(expensive) remote lookup.

(182)

7.6.3. Harvesting validation errors

The opposite approach is to prioritize completeness; that is, to include the details of all failing
validations. In this case, you don’t want failure to prevent further computation; on the contrary,
you want to ensure that all the validators run, and that all errors, if any, are harvested.

This is useful if, say, you’re validating a form with lots of fields, and you want the user to see
everything they need to fix in order to make a valid submission.

Let’s see how we could rewrite the method that combines the different validators.

Listing 7.19. Collecting errors from all validators that fail

Here, instead of using Aggregate, we use Map to map the list of validators to the results of running
the validators on the object to be validated. This ensures that all validators are called
independently, and we end up with an IEnumerable of Validations.

We’re then interested in harvesting all the errors. To do this, we use Option: we map Invalids to a
Some wrapping the errors, and Valids to None. Remember from chapter 4 that Bind can be used to
filter out Nones from a list of Options, and that’s what we’re doing here to obtain a list of all
errors. Because each Invalid contains a list of errors, errors is actually a list of lists. In case of
failure, we need to flatten it into a one-dimensional list and use it to populate an Invalid. If there
were no errors, we return the validand in a Valid.[6]

6

There’s actually a simpler way to accomplish this using applicatives and traverse—tools we
haven’t covered yet. You’ll see this in chapter 13.

Exercises

1. Partial application with a binary arithmetic function:

1. Write a function, Remainder, that calculates the remainder of integer division (and
works for negative input values!). Notice how the expected order of parameters isn’t

(183)

the one that’s most likely to be required by partial application (you’re more likely to
partially apply the divisor).

2. Write an ApplyR function that gives the rightmost parameter to a given binary
function. (Try to do so without looking at the implementation for Apply.) Write the
signature of ApplyR in arrow notation, both in curried and non-curried forms.

3. Use ApplyR to create a function that returns the remainder of dividing any number by
5.

4. Write an overload of ApplyR that gives the rightmost argument to a ternary function.
2. Ternary functions:

1. Define a PhoneNumber class with three fields: number type (home, mobile, ...), country
code (‘it’, ‘uk’, ...), and number. CountryCode should be a custom type with implicit
conversion to and from string.

2. Define a ternary function that creates a new number, given values for these fields.
What’s the signature of your factory function?

3. Use partial application to create a binary function that creates a UK number, and
then again to create a unary function that creates a UK mobile.

3. Functions everywhere. You may still have a feeling that objects are ultimately more
powerful than functions. Surely a logger object should expose methods for related
operations such as Debug, Info, and Error? To see that this is not necessarily so, challenge
yourself to write a very simple logging mechanism (logging to the console is fine) that
doesn’t require any classes or structs. You should still be able to inject a Log value into a
consumer class or function, exposing the operations Debug, Info, and Error, like so:
void ConsumeLog(Log log)

 => log.Info("look! no classes!");

4. Open exercise: in your day-to-day coding, start paying more attention to the signatures of
the functions you write and consume. Does the order of arguments make sense; that is, do
they go from general to specific? Is there some argument that you always invoke with the
same value, so that you could partially apply it? Do you sometimes write similar variations
of the same code, and could these be generalized into a parameterized function?

5. Implement Map, Where, and Bind for IEnumerable in terms of Aggregate.

Summary

Partial application means giving a function its arguments piecemeal, effectively creating a
more specialized function with each argument given.
Currying means changing the signature of a function so that it will take its arguments one
at a time.
Partial application enables you to write highly general functions by parameterizing their
behavior, and then supplying arguments to obtain increasingly specialized functions.
The order of arguments matters: you give the leftmost argument first, so that a function
should declare its arguments from general to specific.
When working with multi-argument functions in C#, method resolution can be problematic
and lead to syntactic overhead. This can be overcome by relying on Funcs rather than on
methods.
You can inject the dependencies required by your functions by declaring them as
arguments. This allows you to compose your application entirely of functions, without
compromising on the separation of concerns, decoupling, and testability.

(184)

Chapter 8. Working effectively with multi-argument
functions
This chapter covers

Using multi-argument functions with elevated types
Using LINQ syntax with any monadic type
The fundamentals of property-based testing

The main goal of this chapter is to teach you to use multi-argument functions in the world of
effectful types, so the “effectively” in the title is also a pun! Remember, effectful types are types
such as Option (which adds the effect of optionality), Exceptional (exception handling),
IEnumerable (aggregation), and others. In part 3, you’ll see several more effects related to state,
laziness, and asynchrony.

As you code more functionally, you’ll come to rely heavily on these effects. You probably
already use IEnumerable a lot. If you embrace the fact that types like Option and some variation of
Either add robustness to your programs, you’ll soon be dealing in elevated types in much of your
code.

Although you’ve seen the power of core functions like Map and Bind, there’s an important
technique you haven’t seen yet: how to integrate multi-argument functions in your workflows,
given that Map and Bind both take unary functions.

It turns out that there are two possible approaches: the applicative and monadic approaches.
We’ll first look at the applicative approach, which uses the Apply function—a pattern you haven’t
seen yet. We’ll then revisit monads, and you’ll see how you can use Bind with multi-argument
functions, and how LINQ syntax can be very helpful in this area. We’ll then compare the two
approaches and see why both can be useful in different cases.

Along the way, I’ll also present some of the theory related to monads and applicatives, and I’ll
introduce a technique for unit testing called property-based testing.

(185)

8.1. Function application in the elevated world

In this section I’ll introduce the applicative approach, which relies on the definition of a new
function, Apply, that performs function application in the elevated world. Apply, like Map and Bind,
is one of the core functions in FP.

To warm up, start the REPL, import the LaYumba.Functional library as usual, and type the
following:

Func<int, int> @double = i => i * 2;

Some(3).Map(@double) // => Some(6)

So far, nothing new: you have a number wrapped in an Option, and you can apply the unary
function @double to it with Map. Now, say you have a binary function like multiplication, and you
have two numbers each wrapped in an Option. How can you apply the function to its arguments?

Here’s the key concept: currying (which was covered in chapter 7) allows you to turn any n-ary
function into a unary function that, when given its argument, will return a (n-1)-ary function.
This means you can use Map with any function, as long as it’s curried! Let’s see this in practice.

Listing 8.1. Mapping a curried function onto an Option

Func<int, Func<int, int>> multiply = x => y => x * y;

var multBy3 = Some(3).Map(multiply);

// => Some(y => 3 * y))

Remember, when you Map a function onto an Option, Map “extracts” the value in the Option and
applies the given function to it. In the preceding listing, Map will extract the value 3 from the
Option and feed it to the multiply function: 3 will replace the variable x, yielding the function y =>
3 * y.

Let’s look at the types:

multiply : int → int → int

Some(3) : Option<int>

Some(3).Map(multiply) : Option<int → int>

So when you map a multi-argument function, the function is partially applied to the argument
wrapped in the Option. Let’s look at this from a more general point of view. Here’s the signature
of Map for a functor F:

Map : F<T> → (T → R) → F<R>

Now imagine that the type of R happens to be T1 → T2, so R is actually a function. In that case, the
signature expands to

F<T> → (T → T1 → T2) → F<T1 → T2>

But look at the second argument: T → T1 → T2—that’s a binary function in curried form. This
means that you can really use Map with functions of any arity! In order to free the caller from
having to curry functions, my functional library includes overloads of Map that accept functions of
various arities and take care of currying; for example:

(186)

public static Option<Func<T2, R>> Map<T1, T2, R>

 (this Option<T1> opt, Func<T1, T2, R> func)

 => opt.Map(func.Curry());

As a result, the following code also works.

Listing 8.2. Mapping a binary function onto an Option

Func<int, int, int> multiply = (x, y) => x * y;

var multBy3 = Some(3).Map(multiply);

// => Some(y => 3 * y))

Now that you know you can effectively use Map with multi-argument functions, let’s look at the
resulting value. This is something you’ve not seen before: an elevated function—a function
wrapped in an elevated type, as illustrated in figure 8.1.

Figure 8.1. Mapping a binary function onto an Option yields a unary function wrapped in an Option.

There’s nothing special about an elevated function. Functions are just values, so it’s just another
value wrapped in one of the usual containers.

And yet, how do you deal with an elevated value that’s a function? Now that you have a unary
function wrapped in an Option, how do you supply it its second argument? And what if the
second argument is also wrapped in an Option? A crude approach would be to explicitly unwrap
both values and then apply the function to the argument, like this:

Func<int, int, int> multiply = (x, y) => x * y;

Option<int> optX = Some(3)

 , optY = Some(4);

var result = optX.Map(multiply).Match(

 () => None,

 (f) => optY.Match(

 () => None,

 (y) => Some(f(y))

)

);

result // => Some(12)

This code isn’t nice: it leaves the elevated world of Option to apply the function, only to lift the
result back up into an Option. Is it possible to abstract this, and integrate multi-argument
functions in a workflow without leaving the elevated world? This is indeed what the Apply
function does, and we’ll look at it next.

8.1.1. Understanding applicatives

(187)

Before we look at defining Apply for elevated values, let’s briefly review the Apply function we
defined in chapter 7, which performs partial application in the world of regular values. We
defined various overloads for Apply that take an n-ary function and an argument, and return the
result of applying the function to the argument. The signatures are in the form

Apply : (T → R) → T → R

Apply : (T1 → T2 → R) → T1 v (T2 → R)

Apply : (T1 → T2 → T3 → R) → T1 → (T2 → T3 → R)

These signatures say, “Give me a function and a value, and I’ll give you the result of applying
the function to the value,” whether that’s the function’s return value, or the partially applied
function.

In the elevated world, we need to define overloads of Apply where the input and output values are
wrapped in elevated types. In general, for any functor A for which Apply can be defined, the
signatures of Apply will be in the form

Apply : A<T → R> → A<T> → A<R>

Apply : A<T1 → T2 → R> → A<T1> → A<T2 → R>

Apply : A<T1 → T2 → T3 → R> → A<T1> → A<T2 → T3 → R>

It’s just like the regular Apply, but in the elevated world: “Give me a function wrapped in an A,
and a value wrapped in an A, and I’ll give you the result of applying the function to the value,
also wrapped in an A, of course.” This is illustrated in figure 8.2.

Figure 8.2. Apply performs function application in the elevated world.

An implementation of Apply must unwrap the function, unwrap the value, apply the function to
the value, and wrap the result back up. When a suitable implementation of Apply is defined for a

(188)

functor A, this is called an applicative functor, or simply an applicative.

Let’s look at how Apply is defined for Option, making it an applicative.

Listing 8.3. Implementation of Apply for Option

The first overload is the important one. It takes a unary function wrapped in an Option, and an
argument to that function, also wrapped in an Option. The implementation returns Some only if
both inputs are Some, and None in all other cases.

As usual, overloads are required for the various arities of the wrapped func-tions, but those can
be defined in terms of the unary version, as the second overload demonstrates.

Now that the low-level details of wrapping and unwrapping are taken care of, let’s see how you
can use Apply with a binary function:

Func<int, int, int> multiply = (x, y) => x * y;

Some(3).Map(multiply).Apply(Some(4));

 // => Some(12)

Some(3).Map(multiply).Apply(None);

// => None

In short, if you have a function wrapped in a container, Apply allows you to supply arguments to
it. Let’s take this idea one step further.

8.1.2. Lifting functions

In the examples so far, you’ve seen functions “lifted” into a container by mapping a multi-
argument function onto an elevated value, like this:

Some(3).Map(multiply)

Alternatively, you could lift a function into a container by simply using the container’s Return
function, just like with any other value. After all, the wrapped function doesn’t care how it gets
there. So you can write this:

(189)

This can be generalized to functions of any arity. And, as usual, you get the safety of Option, so
that if any value along the way is None, the final result will also be None:

Some(multiply)

 .Apply(None)

 .Apply(Some(4))

// => None

As you can see, there are two distinct but equivalent ways of evaluating a binary function in the
elevated world. You can see these side-by-side in the following listing.

Listing 8.4. Two equivalent ways to achieve function application in the elevated world

Map the function, then Apply.

Some(3)

 .Map(multiply)

 .Apply(Some(4))

Lift the function, then Apply.

Some(multiply)

 .Apply(Some(3))

 .Apply(Some(4))

The second way, of first lifting the function with Return and then applying arguments, is more
readable and more intuitive because it’s similar to partial application in the world of regular
values, as shown in listing 8.5.

Listing 8.5. Partial application in the worlds of regular and elevated values

Partial application with regular values

multiply

 .Apply(3)

 .Apply(4)

// => 12

Partial application with elevated values

Some(multiply)

 .Apply(Some(3))

 .Apply(Some(4))

// => Some(12)

Whether you obtain the function by using Map or lifting it with Return doesn’t matter in terms of
the resulting functor. This is a requirement, and it will hold if the applicative is correctly

(190)

implemented, so that it’s sometimes called the applicative law.[1]

1

In reality, there are four laws that correct implementations of Apply and Return must satisfy;
these essentially hold that the identity function, function composition, and function
application work in the applicative world as they do in the normal world. The applicative
law I refer to in the text holds as a consequence of these, and it’s more important than the
underlying four laws in terms of refactoring and practical use. I won’t discuss the four laws
in detail here, but if you want to learn more, you can see the documentation for the
applicative module in Haskell at https://hackage.haskell.org/package/base-
4.9.0.0/docs/Control-Applicative.html. In addition, you can view property-based tests
illustrating the applicative laws in the code samples,
LaYumba.Functional.Tests/Option/ApplicativeLaws.cs.

8.1.3. An introduction to property-based testing

Can we write some unit tests to prove that the functions we’ve been using to work with Option
satisfy the applicative law? There’s a specific technique for this sort of testing—that is, testing
that an implementation satisfies certain laws or properties. It’s called property-based testing, and
a supporting framework called FsCheck is available for doing property-based testing in .NET.[2]

2

FsCheck is written in F# and is available freely (https://github.com/fscheck/FsCheck). Like
many similar frameworks written for other languages, it’s a port from Haskell’s
QuickCheck.

Property-based tests are parameterized unit tests whose assertions should hold for any possible
value of the parameters. That is, you write a parameterized test and then let a framework such as
FsCheck repeatedly run the test with a large set of randomly generated parameter values.

It’s easiest to understand this by example. The following listing shows what a property test for
the applicative law could look like.

Listing 8.6. A property-based test illustrating the applicative law

(191)

https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Applicative.html
https://github.com/fscheck/FsCheck

If you look at the signature of the test method, you’ll see that it’s parameterized with two int
values. But unlike the parameterized tests you saw in chapter 2, here we’re not providing any
values for the parameters. Instead, we’re just decorating the test method with the Property
attribute defined in FsCheck.Xunit.[3] When you run your tests, FsCheck will randomly generate a
large number of input values and run the test with these values.[4] This frees you from having to
come up with sample inputs and gives you much better confidence that edge cases are covered.

3

This also has the effect of integrating the property-based tests with your testing framework:
when you run your tests with dotnet test, all property-based tests will be run as well as the
regular unit tests. Although an FsCheck.NUnit package exists, exposing the Property attribute
for NUnit, integration with NUnit at the time of this writing is poor.

4

By default, FsCheck generates 100 values, but the number and range of input values can be
customized. If you start using property-based testing seriously, being able to fine-tune the
parameters with which the values are generated becomes quite important.

This test passes, but we’re taking ints as parameters and lifting them into Options, so it only
illustrates the behavior with Options in the Some state. We should also test what happens with None.
The signature of our test method should really be

void ApplicativeLawHolds(Option<int> a, Option<int> b)

That is, we’d also ideally like FsCheck to randomly generate Options in the Some or None state and
feed them to the test.

If we try to run this, FsCheck will complain that it doesn’t know how to randomly generate an
Option<int>. Fortunately, we can teach FsCheck how to do this.

Listing 8.7. Teaching FsCheck to create an arbitrary Option

static class ArbitraryOption

{

 public static Arbitrary<Option<T>> Option<T>()

 {

 var gen = from isSome in Arb.Generate<bool>()

 from val in Arb.Generate<T>()

 select isSome && val != null ? Some(val) : None;

 return gen.ToArbitrary();

 }

}

FsCheck knows how to generate primitive types such as bool and int, so generating an
Option<int> should be easy: generate a random bool and then a random int; if the bool is false,
return None, and otherwise wrap the generated int into a Some. This is the essential meaning of the
preceding code above—don’t worry about the exact details at this point.

(192)

Now we just need to instruct FsCheck to look into the ArbitraryOption class when a random
Option<T> is required.

Listing 8.8. The property-based test, parameterized with arbitrary Options

[Property(Arbitrary = new[] { typeof(ArbitraryOption) })]

void ApplicativeLawHolds(Option<int> a, Option<int> b)

 => Assert.Equal(

 Some(multiply).Apply(a).Apply(b),

 a.Map(multiply).Apply(b)

);

Sure enough, FsCheck is now able to randomly generate the inputs to this test, which passes and
beautifully illustrates the applicative law. Does it prove that our implementation always satisfies
the applicative law? Not entirely, because it only tests that the property holds for the multiply
function, whereas the law should hold for any function. Unfortunately, unlike with numbers and
other values, it’s impossible to randomly generate a meaningful set of functions. But this sort of
property-based test still gives us good confidence—certainly better than a unit test, even a
parameterized one.

Real-world property-based testing

Property-based testing is not just for theoretical stuff but can be effectively applied to LOB
applications. Whenever you have an invariant, you can write property tests to capture it. Here’s a
really simple example: if you have a randomly populated shopping cart, and you remove a
random number of items from it, the total of the modified cart must always be less than or equal
to the total of the original cart. You can start with such simple properties and then add other
properties until they capture the essence of your model.[5]

5

For more inspiration on how you can capture business rules through properties, see Scott
Wlaschin’s “Choosing properties for property-based testing” article at
https://fsharpforfunandprofit.com/posts/property-based-testing-2/.

Now that we’ve covered the mechanics of the Apply function, let’s compare applicatives with the
other patterns we’ve previously discussed. Once that’s done, we’ll look at applicatives in action
with a more concrete example and at how they compare, especially to monads.

(193)

https://fsharpforfunandprofit.com/posts/property-based-testing-2/

8.2. Functors, applicatives, monads

Let’s recap three important patterns you’ve seen so far: functors, applicatives, and monads.[6]

Remember that functors are defined by an implementation of Map, monads by an implementation
of Bind and Return, and applicatives by an implementation of Apply and Return, as summarized in
table 8.1.

6

As pointed out in chapter 4, in some languages, like Haskell, these patterns can be captured
explicitly with “type classes,” which are akin to interfaces but more powerful. The C# type
system doesn’t support these generic abstractions, so you can’t idiomatically capture Map or
Bind in an interface.

Table 8.1. Summary of the core functions and how they define patterns

Pattern Required functions Signature

Functor Map F<T> → (T → R) → F<R>

Applicative Return Apply T → A<T> A<(T → R)> →
A<T> → A<R>

Monad Return Bind T → M<T> M<T> → (T →
M<R>) → M<R>

First, why is Return a requirement for monads and applicatives, but not for functors? You need a
way to somehow put a value T into a functor F<T>; otherwise you couldn’t create anything on
which to Map a function. The point, really, is that the functor laws—the properties that Map should
observe—don’t rely on a definition of Return, whereas the monad and applicative laws do. So,
this is mostly a technicality.

More interestingly, you may be wondering what the relation is between these three patterns. In
chapter 5 you saw that monads are more powerful than functors. Applicatives are also more
powerful than functors, because you can define Map in terms of Return and Apply. Map takes an
elevated value and a regular function, so you can just lift the function using Return, and then
apply it to the elevated value using Apply. For Option, that looks like this:

public static Option<R> Map<T, R>

 (this Option<T> opt, Func<T, R> f)

 => Some(f).Apply(opt);

The implementation for any other applicative would be the same, using the relevant Return
function instead of Some.

Finally, monads are more powerful than applicatives, because you can define Apply in terms of
Bind like so:

public static Option<R> Apply<T, R>

 (this Option<Func<T, R>> optF, Option<T> optT)

 => optT.Bind(t => optF.Bind<Func<T, R>, R>(f => f(t)));

(194)

This enables us to establish a hierarchy, in which functor is the most general pattern, and
applicative sits between functor and monad, as represented in figure 8.3.

Figure 8.3. Relation of functor, applicative, and monad

You can read this as a class diagram: if functor were an interface, applicative would extend it.
Furthermore, in chapter 7 I discussed the fold function, or Aggregate as it’s called in LINQ, which
is the most powerful of them all because you can define Bind in terms of it.

Applicatives aren’t as commonly used as functors and monads, so why even bother? It turns out
that although Apply can be defined in terms of Bind, it generally receives its own implementation,
both for efficiency and because Apply can have interesting behavior that’s lost when you define
Apply in terms of Bind. In this book I’ll show two monads for which the implementation of Apply
has such interesting behavior: Validation, later in this chapter, and Task, in chapter 13.

Next, let’s go back to the topic of monads to see how you can use Bind with multi-argument
functions.

(195)

8.3. The monad laws

I’ll now discuss the monad laws, as promised in chapter 4, where I first introduced the term
monad. If you’re not interested in the theory, skip to section 8.3.4.

Remember, a monad is a type, M, for which the following functions are defined:

Return, which takes a regular value of type T and lifts it into a monadic value of type M<T>
Bind, which takes a monadic value, m, and a world-crossing function, f, and “extracts” from
m its inner value t and applies f to it

Return and Bind should have the following three properties:

1. Right identity
2. Left identity
3. Associativity

For the present discussion, we’re mostly interested in the third law, associativity, but the first two
are simple enough that we can cover them too.

8.3.1. Right identity

The property of right identity states that if you Bind the Return function onto a monadic value, m,
you end up with m. In other words, the following should hold:

m == m.Bind(Return)

If you look at the preceding equation, on the right side Bind unwraps the value inside m and
applies Return, which lifts it back up, so it’s not surprising that the net effect should be nought.

Listing 8.9. A property-based test proving that right identity holds for the Option type

[Property(Arbitrary = new[] { typeof(ArbitraryOption) })]

void RightIdentityHolds(Option<object> m)

 => Assert.Equal(

 m,

 m.Bind(Some)

);

8.3.2. Left identity

The property of left identity states that if you first use Return to lift a t and then Bind a function, f,
over the result, that should be equivalent to applying f to t:

Return(t).Bind(f) == f(t)

If you look at this equation, on the left side you’re lifting t with Return, and then Bind extracts it
before feeding it to f. So this law states that this lifting and extracting should have no side
effects, and it should also not affect t in any way.

Listing 8.10. A property-based test illustrating left identity for IEnumerable

(196)

Func<int, IEnumerable<int>> f = i => Range(0, i);

[Property] void LeftIdentityHolds(int t) => Assert.Equal(

 f(t),

 List(t).Bind(f)

);

Taken together, left and right identity ensure that the lifting operation performed in Return and
the unwrapping that occurs as part of Bind are neutral operations that have no side effects and
don’t distort the value of t or the behavior of f, regardless of whether this wrapping and
unwrapping happens before (left) or after (right) a value is lifted into the monad. We could write
a monad that internally keeps a count of how many times Bind is called, or otherwise creates
some random noise, and that would break this property.

In simpler words, Return should be as dumb as possible: no side effects, no conditional logic, no
acting upon the given t. Only the minimal work required to satisfy the signature T → C<T>.

Let’s see a counterexample. Look at the following property-based test that supposedly illustrates
left identity for Option:

Func<string, Option<string>> f = s => Some($"Hello {s}");

[Property] void LeftIdentityHolds(string t) => Assert.Equal(

 f(t),

 Some(t).Bind(f)

);

It turns out that the preceding property fails when the value of t is null. This is because our
implementation of Some is “too smart” and throws an exception if given null, whereas this
particular function, f, is null-tolerant and yields Some("Hello ").

If you wanted left identity to hold for any value, including null, you’d need to change the
implementation of Some to lift null into a Some. This would be a very bad idea, because then Some
would indicate the presence of data when in fact there is none.

8.3.3. Associativity

Let’s now move on to the third law, which is the most meaningful for our present discussion. I’ll
start with a reminder of what associativity means for addition: if you need to add more than two
numbers, it doesn’t matter how you group them. That is, for any numbers a, b, and c, the
following is true:

(a + b) + c == a + (b + c)

Bind can also be thought of as a binary operator and can be indicated with the symbol >>=, so that
instead of m.Bind(f) you can symbolically write m >>= f, where m indicates a monadic value and f
a world-crossing function. The symbol >>= is a fairly standard notation for Bind, and it’s supposed
to graphically reflect what Bind does: extract the inner value of the left operand and feed it to the
function that’s the right operand.

It turns out that Bind is also associative in some sense, so you should be able to write the
following equation:

(m >>= f) >>= g == m >>= (f >>= g)

Let’s look at the left side: here you compute the first Bind operation, and then you use the

(197)

resulting monadic value as input to the next Bind operation. This would expand to
m.Bind(f).Bind(g), which is how we normally use Bind.

Let’s now look at the right side. As it’s written, it’s syntactically wrong: (f >>= g) doesn’t work
because >>= expects the left operand to be a monadic value, whereas f is a function. But note that
f can be expanded to its lambda form, x => f(x), so you can rewrite the right side as follows:

m >>= (x => f(x) >>= g)

The associativity of Bind can be then summarized with this equation:

(m >>= f) >>= g == m >>= (x => f(x) >>= g)

Or, if you prefer, the following:

m.Bind(f).Bind(g) == m.Bind(x => f(x).Bind(g))

Let’s see this translated into code with a property-based test that illustrates how the associative
property holds for Option.

Listing 8.11. A property-based test illustrating Bind associativity for Option

When we associate to the left, as in m.Bind(f).Bind(g), that gives the more readable syntax, and
the one we’ve been using so far. But if we associate to the right and expand g to its lambda form,
we get this:

m.Bind(x => f(x).Bind(y => g(y)))

The interesting thing is that here g has visibility not only of y, but also of x. This is what enables
you to integrate multi-argument functions in a monadic flow (by which I mean a workflow
chaining several operations with Bind). We’ll look at this next.

8.3.4. Using Bind with multi-argument functions

Let’s look at how calling Bind inside a previous call to Bind allows you to integrate multi-
argument functions. For instance, imagine multiplication where both arguments are optional,
because they must be parsed from strings. In this example, Int.Parse takes a string and returns an
Option<int>:

static Option<int> MultiplicationWithBind(string strX, string strY)

 => Int.Parse(strX).Bind(x => Int.Parse(strY)

 .Bind<int, int>(y => multiply(x, y)));

(198)

That works, but it’s not at all readable. Imagine if you had a function taking three or more
arguments! The nested calls to Bind make the code very difficult to read, so you certainly
wouldn’t want to write or maintain code like this. The applicative syntax was much clearer.

It turns out that there’s a much better syntax for writing nested applications of Bind, and that
syntax is called LINQ.

(199)

8.4. Improving readability by using LINQ with any monad

Depending on context, the name LINQ is used to indicate different things:

It can simply refer to the System.Linq library
It can indicate a special SQL-like syntax that can be used to express queries on various
kinds of data. In fact, LINQ stands for Language-Integrated Query.

Naturally, the two are linked, and they were both introduced in tandem in C# 3. So far, all usages
of the LINQ library you’ve seen in this book have used normal method invocation, but
sometimes using the LINQ syntax can result in more readable queries.

For example, type the following two expressions into the REPL to see that they’re equivalent.

Listing 8.12. LINQ is a dedicated syntax for expressing queries

Normal method invocation

Enumerable.Range(1, 100).

 Where(i => i % 20 == 0).

 OrderBy(i => -i).

 Select(i => $"{i}%")

LINQ expression

from i in Enumerable.Range(1, 100)

where i % 20 == 0 orderby -i

select $"{i}%"

These two expressions aren’t just equivalent in the sense that they produce the same result; they
actually compile to the same code. When the C# compiler finds a LINQ expression, it translates
its clauses to method calls in a pattern-based way—you’ll see what this means in more detail in a
moment.

This means that it’s possible for you to implement the query pattern for your own types and work
with them using LINQ syntax, which can significantly improve readability.

Next, we’ll look at implementing the query pattern for Option.

8.4.1. Using LINQ with arbitrary functors

The simplest LINQ queries have single from and select clauses, and they resolve to the Select
method. For example, here’s a simple query using a range as a data source:

using System.Linq;

using static System.Linq.Enumerable;

from x in Range(1, 4)

select x * 2;

// => [2, 4, 6, 8]

Range(1, 4) yields a sequence with the values [1, 2, 3, 4], and this is the data source for the
LINQ expression. We then create a “projection,” by mapping each item x in the data source to x
* 2, to produce the result. What happens under the hood?

(200)

Given a LINQ expression like the preceding one, the compiler will look at the type of the data
source (in this case, Range(1, 4) has type RangeIterator), and will look for an instance or
extension method called Select. The compiler uses its normal strategy for method resolution,
prioritizing the most specific match in scope, which in this case is Enumerable.Select, defined as
an extension method on IEnumerable.

Below you can see the LINQ expression and its translation side by side. Notice how the lambda
given to Select combines the identifier x in the from clause and the selector expression x * 2 in
the select clause.

Listing 8.13. A LINQ expression with a single from clause and its interpretation

from x in Range(1, 4)

select x * 2

Range(1, 4).

 Select(x => x * 2)

Remember from chapter 4 that Select is the LINQ equivalent for the operation more commonly
known in FP as Map. LINQ’s pattern-based approach means that you can define Select for any
type you please, and the compiler will use it whenever it finds that type as the data source of a
LINQ query. Let’s do that for Option:

public static Option<R> Select<T, R>

 (this Option<T> opt, Func<T, R> f)

 => opt.Map(f);

The preceding code effectively just “aliases” Map with Select, which is the name that the compiler
looks for. That’s all you need to be able to use an Option inside a simple LINQ expression! Here
are some examples:

from x in Some(12)

select x * 2

// => Some(24)

from x in (Option<int>)None

select x * 2

// => None

(from x in Some(1) select x * 2) == Some(1).Map(x => x * 2)

// => true

In summary, you can use LINQ queries with a single from clause with any functor by providing a
suitable Select method. Of course, for such simple queries, the LINQ notation isn’t really
beneficial; standard method invocation even saves you a couple of keystrokes. Let’s see what
happens with more complex queries.

8.4.2. Using LINQ with arbitrary monads

Let’s look at queries with multiple from clauses—queries that combine data from multiple data
sources. Here’s an example:

var chars = new[] { 'a', 'b', 'c' };

var ints = new [] { 2, 3 };

from c in chars

from i in ints

select (c, i)

// => [(a, 2), (a, 3), (b, 2), (b, 3), (c, 2), (c, 3)]

(201)

As you can see, this is somewhat analogous to a nested loop over the two data sources, and you
probably are thinking you could have achieved the same with Bind.

Indeed, you could write an equivalent expression using Map and Bind as follows:

chars

 .Bind(c => ints

 .Map(i => (c, i)));

Or, equivalently, using the standard LINQ method names (Select instead of Map and SelectMany
instead of Bind):

chars

 .SelectMany(c => ints

 .Select(i => (c, i)));

Notice that you can construct a result that includes data from both sources because you “close
over” the variable c.

You might guess that when multiple from clauses are present in a query, they’re interpreted with
the corresponding calls to SelectMany. Your guess would be correct, but there’s a twist. For
performance reasons, the compiler doesn’t perform the preceding translation, translating instead
to an overload of SelectMany with a different signature:

public static IEnumerable<RR> SelectMany<T, R, RR>

 (this IEnumerable<T> source

 , Func<T, IEnumerable<R>> bind

 , Func<T, R, RR> project)

{

 foreach (T t in source)

 foreach (R r in bind(t))

 yield return project(t, r);

}

That means this LINQ query

from c in chars

from i in ints

select (c, i)

will actually be translated as follows:

chars.SelectMany(c => ints, (c, i) => (c, i))

Let’s compare the plain vanilla implementation of SelectMany, which has the same signature as
Bind, and this extended overload (see listing 8.14).

Listing 8.14. Two overloads of SelectMany are required to implement the query pattern

(202)

Compare the signatures and you’ll see that the second overload is obtained by “squashing” the
plain vanilla SelectMany with a call to a selector function; not the usual selector in the form T → R,
but a selector that takes two input arguments (one for each data source).

The advantage is that with this more elaborate overload of SelectMany, there’s no longer any need
to nest one lambda inside another, improving performance.[7]

7

The designers of LINQ noticed that performance deteriorated rapidly as several from clauses
were used in a query.

The extended SelectMany is more complex than the plain vanilla version we identified with
monadic Bind, but it’s still functionally equivalent to a combination of Bind and Select. This
means we can define a reasonable implementation of the LINQ-flavored SelectMany for any
monad. Let’s see it for Option:

public static Option<RR> SelectMany<T, R, RR>

 (this Option<T> opt, Func<T, Option<R>> bind, Func<T, R, RR> project)

 => opt.Match(

 () => None,

 (t) => bind(t).Match(

 () => None,

 (r) => Some(project(t, r))));

If you want an expression with three or more from clauses, the compiler will also require the
plain vanilla version of SelectMany, which you can provide trivially by aliasing Bind with
SelectMany.

You can now write LINQ queries on Options with multiple from clauses. For example, here’s a
simple program that prompts the user for two integers and computes their sum, using the Option-
returning function Int.Parse to validate that the inputs are valid integers:

WriteLine("Enter first addend:");

var s1 = ReadLine();

WriteLine("Enter second addend:");

var s2 = ReadLine();

var result = from a in Int.Parse(s1)

 from b in Int.Parse(s2)

 select a + b;

WriteLine(result.Match(

 Some: r => $"{s1} + {s2} = {r}",

 None: () => "Please enter 2 valid integers"));

Let’s take the query from the preceding example and see how the LINQ syntax compares with

(203)

alternative ways to write the same expression.

Listing 8.15. Different ways to add two optional integers

// 1. using LINQ query

from a in Int.Parse(s1)

from b in Int.Parse(s2)

select a + b

// 2. normal method invocation

Int.Parse(s1)

 .Bind(a => Int.Parse(s2)

 .Map(b => a + b))

// 3. the method invocation that the LINQ query will be converted to

Int.Parse(s1)

 .SelectMany(a => Int.Parse(s2)

 , (a, b) => a + b)

// 4. using Apply

Some(new Func<int, int, int>((a, b) => a + b))

 .Apply(Int.Parse(s1)

 .Apply(Int.Parse(s2))

There’s little doubt that LINQ provides the most readable syntax in this scenario. Apply compares
particularly poorly because you must specify that you want your projection function to be used as
a Func.[8] You may find it unfamiliar to use the SQL-ish LINQ syntax to do something that has
nothing to do with querying a data source, but this use is perfectly legitimate. LINQ expressions
simply provide a convenient syntax for working with monads, and they were modeled after
equivalent constructs in functional languages.[9]

8

This is because lambda expressions can be used to represent Expressions as well as Funcs.

9

For instance, do blocks in Haskell, or for comprehensions in Scala.

8.4.3. let, where, and other LINQ clauses

In addition to the from and select clauses you’ve seen so far, LINQ provides a few other clauses.
The let clause is useful for storing the results of intermediate computations. For example, let’s
look at a program that calculates the hypotenuse of a right triangle, having prompted the user for
the lengths of the legs.

Listing 8.16. Using the let clause with Option

(204)

The let clause allows you to put a new variable, like aa in this example, within the scope of the
LINQ expression. To do so, it relies on Select, so no extra work is needed to enable the use of
let.

One more clause you can use with Option is the where clause. This resolves to the Where method
we’ve already defined, so no extra work is necessary in this case. For example, for the
calculation of the hypotenuse, you should check not only that the user’s inputs are valid numbers,
but also that they are positive.

Listing 8.17. Using the where clause with Option

string s1 = Prompt("First leg:")

 , s2 = Prompt("Second leg:");

var result = from a in Double.Parse(s1)

 where a >= 0

 let aa = a * a

 from b in Double.Parse(s2)

 where b >= 0

 let bb = b * b

 select Math.Sqrt(aa + bb);

WriteLine(result.Match(

 () => "Please enter two valid, positive numbers",

 (h) => $"The hypotenuse is {h}"));

As these examples show, the LINQ syntax allows you to concisely write queries that would be
very cumbersome to write as combinations of calls to the corresponding Map, Bind, and Where
functions.

LINQ also contains various other clauses, such as orderby, which you’ve seen in a previous
example. These clauses make sense for collections but have no counterpart in structures like
Option and Either.

In summary, for any monad you can implement the LINQ query pattern by providing
implementations for Select (Map), SelectMany (Bind), and the ternary overload to SelectMany you’ve
seen. Some structures may have other operations that can be included in the query pattern, such
as Where in the case of Option.

Now that you’ve seen how LINQ provides a lightweight syntax for using Bind with multi-
argument functions, let’s go back to comparing Bind and Apply, not just based on readability, but
on actual functionality.

(205)

8.5. When to use Bind vs. Apply

LINQ provides a very good syntax for using Bind, even with multi-argument functions—even
better than using Apply with normal method invocation. Should we still care about Apply? It turns
out that in some cases Apply can have interesting behavior. One such case is validation—you’ll
see why next.

8.5.1. Validation with smart constructors

Consider the following implementation of a PhoneNumber class. Can you see anything wrong with
it?

public class PhoneNumber

{

 public string Type { get; }

 public string Country { get; }

 public long Nr { get; }

}

The answer should be staring you in the face: the types are wrong! This class allows you to
create a PhoneNumber with, say Type = “green”, Country = “fantasyland”, and Nr = -10.

You saw in chapter 3 how defining custom types enables you to ensure that invalid data can’t
creep into your system. Here’s a definition of a PhoneNumber class that follows this philosophy:

public class PhoneNumber

{

 public NumberType Type { get; }

 public CountryCode Country { get; }

 public Number Nr { get; }

 public enum NumberType { Mobile, Home, Office }

 public struct Number { /* ... */ }

}

public class CountryCode { /* ... */ }

Now the three fields of a PhoneNumber all have specific types, which should ensure that only valid
values can be represented. CountryCode may be used elsewhere in the application, but the
remaining two types are specific to phone numbers, so they’re defined inside the PhoneNumber
class.

We still need to provide a way to construct a PhoneNumber. For that, we can define a private
constructor, and a public factory function, Create:

public class PhoneNumber

{

 public static Func<NumberType, CountryCode, Number, PhoneNumber>

 Create = (type, country, number)

 => new PhoneNumber(type, country, number);

 PhoneNumber(NumberType type, CountryCode country, Number number)

 {

 Type = type;

 Country = country;

 Nr = number;

 }

}

Now imagine we’re given three strings as raw input, and based on them we need to create a

(206)

PhoneNumber. Each property can be validated independently, so we can define three smart
constructors with the following signatures:

validCountryCode : string → Validation<CountryCode>

validNnumberType : string → Validation<PhoneNumber.NumberType>

validNumber : string → Validation<PhoneNumber.Number>

The implementation details of these functions aren’t important (see the code samples if you want
to know more). The gist is that validCountryCode will take a string and return a Validation in the
Valid state only if the given string represents a valid CountryCode. The other two functions are
similar.

8.5.2. Harvesting errors with the applicative flow

Given the three input strings, we can combine these three functions in the process of creating a
PhoneNumber. With the applicative flow, we can lift the PhoneNumbers factory function into a Valid,
and apply its three arguments.

Listing 8.18. Validation using an applicative flow

This function yields Invalid if any of the functions we’re using to validate the individual fields
yields Invalid.

Let’s see its behavior, given a variety of different inputs:

CreatePhoneNumber("Mobile", "ch", "123456")

// => Valid(Mobile: (ch) 123456)

CreatePhoneNumber("Mobile", "xx", "123456")

// => Invalid([xx is not a valid country code])

CreatePhoneNumber("Mobile", "xx", "1")

// => Invalid([xx is not a valid country code, 1 is not a valid number])

The first expression shows the successful creation of a PhoneNumber. In the second case, we’re
passing an invalid country code and get a failure as expected. In the third case, both the country
and number are invalid, and we get a validation with two errors—remember, the Invalid case of
a Validation holds an IEnumerable<Error> precisely to capture multiple errors.

But how are the two errors, which are returned by different functions, harvested in the final
result? This is due to the implementation of Apply for Validation.

Listing 8.19. Implementation of Apply for Validation

(207)

As we’d expect, Apply will apply the wrapped function to the wrapped argument only if both are
valid. But, interestingly, if both are invalid, it will return an Invalid that combines errors from
both arguments.

8.5.3. Failing fast with the monadic flow

Let’s now create a PhoneNumber using LINQ.

Listing 8.20. Validation using a monadic flow

Validation<PhoneNumber> CreatePhoneNumberM

 (string typeStr, string countryStr, string numberStr)

 => from type in validNumberType(typeStr)

 from country in validCountryCode(countryStr)

 from number in validNumber(numberStr)

 select PhoneNumber.Create(type, country, number);

Let’s run this new version with the same test values as before:

CreatePhoneNumberM("Mobile", "ch", "123456")

// => Valid(Mobile: (ch) 123456)

CreatePhoneNumberM("Mobile", "xx", "123456")

// => Invalid([xx is not a valid country code])

CreatePhoneNumberM("Mobile", "xx", "1")

// => Invalid([xx is not a valid country code])

The first two cases work as before, but the third case is different: only the first validation error
appears. To see why, let’s look at how Bind is defined (the LINQ query actually calls SelectMany,
but this is implemented in terms of Bind).

Listing 8.21. Implementation of Bind for Validation

public static Validation<R> Bind<T, R>

 (this Validation<T> val, Func<T, Validation<R>> f)

 => val.Match(

 Invalid: (err) => Invalid(err),

 Valid: (r) => f(r));

If the given monadic value is Invalid, the given function isn’t evaluated. In this listing,
validCountryCode returns Invalid, so validNumber is never called. Therefore, in the monadic
version we never get a chance to accumulate errors, because any error along the way causes the
subsequent functions to be bypassed.

(208)

You can probably grasp the difference more clearly if we compare the signatures of Apply and
Bind:

Apply : Validation<(T → R)> → Validation<T> → Validation<R>

Bind : Validation<T> → (T → Validation<R>) → Validation<R>

With Apply, both arguments are of type Validation; that is, the Validations and any possible errors
they contain have already been evaluated independently, prior to the call to Apply. Because errors
from both arguments are present, it makes sense to collect them in the result value.

With Bind, only the first argument has type Validation. The second argument is a function that
yields a Validation, but this hasn’t been evaluated yet, so the implementation of Bind can avoid
calling the function altogether if the first argument is Invalid.[10]

10

Of course, you could provide an implementation of Bind that doesn’t perform any such
short-circuiting but always executes the bound function and collects any errors. This is
possible, but it’s counterintuitive, because it breaks the behavior that we’ve come to expect
from similar types, like Option and Either.

Hence, Apply is about combining two elevated values that are computed independently; Bind is
about sequencing computations that yield an elevated value. For this reason, the monadic flow
allows short-circuiting: if an operation fails along the way, the following operations will be
skipped.

I think what the case of Validation shows is that despite the apparent rigor of functional patterns
and their laws, there’s still room for designing elevated types in a way that suits the particular
needs of a particular application. Given my implementation of Validation and the current
scenario of creating a valid PhoneNumber, you’d use the monadic flow to fail fast, but the
applicative flow to harvest errors.

In summary, you’ve seen three ways to use multi-argument functions in the elevated world: the
good, the bad, and the ugly. Nested calls to Bind is certainly the ugly, and it’s best avoided.
Which of the other two is good or bad depends on your requirements: if you have an
implementation of Apply with some desirable behavior, as you’ve seen with Validation, use the
applicative flow; otherwise, use the monadic flow with LINQ.

Exercises

1. Implement Apply for Either and Exceptional.
2. Implement the query pattern for Either and Exceptional. Try to write down the signatures

for Select and SelectMany without looking at any examples. For the implementation, just
follow the types—if it type checks, it’s probably right!

3. Come up with a scenario in which various Either-returning operations are chained with
Bind. (If you’re short of ideas, you can use the favorite-dish example from chapter 6.)
Rewrite the code using a LINQ expression.

Summary

The Apply function can be used to perform function application in an elevated world, such
as the world of Option.

(209)

Multi-argument functions can be lifted into an elevated world with Return, and then
arguments can be supplied with Apply.
Types for which Apply can be defined are called applicatives. Applicatives are more
powerful than functors, but less powerful than monads.
Because monads are more powerful, you can also use nested calls to Bind to perform
function application in an elevated world.
LINQ provides a lightweight syntax for working with monads that reads better than
nesting calls to Bind.
To use LINQ with a custom type, you must implement the LINQ query pattern,
particularly providing implementations of Select and SelectMany with appropriate
signatures.
For several monads, Bind has short-circuiting behavior (the given function won’t be
applied in some cases), but Apply doesn’t (it’s not given a function, but rather an elevated
value). For this reason, you can sometimes embed desirable behavior into applicatives,
such as collecting validation errors in the case of Validation.
FsCheck is a framework for property-based testing. It allows you to run a test with a large
number of randomly generated inputs, giving high confidence that the test’s assertions
hold for any input.

(210)

Chapter 9. Thinking about data functionally
This chapter covers

The pitfalls of state mutation
Representing change without mutation
Enforcing immutability
Functional data structures

Greek philosopher Heraclitus said that we cannot step into the same river twice; the river
constantly changes, so the river that was there a moment ago is no longer. Many programmers
would disagree, objecting that it’s the same river but its state has now changed. Functional
programmers try to stay true to Heraclitus’s thinking and would create a new river with every
observation.

Most programs are built to represent things and processes in the real world, and because the
world constantly changes, programs must somehow represent that change. The question is how
we represent change. Commercial applications written in the imperative style have state mutation
at their very core: objects represent entities in the business domain, and change in the world is
modeled by mutating the state of these objects.

We’ll start by looking at the weaknesses we introduce in our programs whenever we use
mutation. We’ll then see how we can avoid these problems at the source, by representing change
without using mutation and, more pragmatically, how to enforce immutability in C#. Finally,
because much of our programs’ data is stored in data structures, we’ll introduce the concepts and
techniques behind functional data structures, which are also immutable.

(211)

9.1. The pitfalls of state mutation

State mutation is when memory is updated in-place, and an important problem with it is that
concurrent access to shared mutable state is unsafe. You’ve already seen examples demonstrating
loss of information due to concurrent updates in chapters 1 and 2; let’s now look at a more
object-oriented scenario.

Imagine a Product class with an Inventory field, representing the number of units in stock:

public class Product

{

 public int Inventory { get; private set; }

 public void ReplenishInventory(int units) => Inventory += units;

 public void ProcessSale(int units) => Inventory -= units;

}

If Inventory is mutable, as in this example, and you have concurrent threads updating its value,
this is known as a race condition, and the results can be unpredictable. Imagine that you have a
thread replenishing the inventory, while another thread concurrently processes a sale,
diminishing the inventory accordingly, as in figure 9.1. If both threads read the value at the same
time, and the thread with the sale has the last update, you’ll end up with an overall decrease in
inventory.

Figure 9.1. Loss of data as a result of concurrent updates

Not only has the update to replenish the inventory been lost, but the first thread now potentially
faces a completely invalid state: a product that’s just been replenished has zero inventory.[1]

1

If you’ve done some basic multithreading, you’re probably thinking, “Easy! You just need
to wrap the updates to Inventory in a critical section using the lock statement.” It turns out
that this solution, which works for this simple case, can become the source of some very

(212)

difficult bugs as the complexity of the system increases. (A sale will affect not only the
inventory, but the sales order, the company balance sheet, and so on.)

If things can fail when a single variable is set, imagine when an update to an entity involves
updating several fields. For example, imagine that when you update the inventory, you also set a
flag indicating whether the product is low on inventory.

Listing 9.1. Temporary inconsistency as a result of non-atomic updates

In a single-threaded setting, there aren’t any problems with the preceding code. But in a multi-
threaded setting, another thread could be reading the state of this object just as the update is
taking place, in the small window during which Inventory has been updated but IsLowOnInventory
hasn’t. To that other thread, the object would appear to be in an invalid state. This will, of course,
happen very rarely, and it will be very difficult to reproduce. This is part of the reason why bugs
caused by race conditions are so hard to diagnose.

Indeed, race conditions are known to have caused some of the most spectacular failures in the
software industry. If you have a system with concurrency and state mutation, it’s impossible to
prove that the system is free of race conditions.[2] In other words, if you want concurrency (and,
given today’s tendency toward multicore processors and distributed computing, you hardly have
a choice) and strong guarantees of correctness, you simply must give up mutation.

2

The preceding examples refer to multithreading, but the same problems can arise if the
source of concurrency is asynchrony or parallelism.

Lack of safe concurrent access may be the biggest pitfall of shared mutable state, but it’s not the
only one. Another problem is the risk of introducing coupling—a high degree of interdependence
between different parts of your system. In listing 9.1, Inventory is encapsulated, meaning it can
only be set from within the class, and—according to OOP theory—that’s supposed to give you a
sense of comfort. But how many methods in the Product class can set the inventory value? How
many code paths lead into these methods, so that they ultimately affect the value of Inventory?
How many parts of the application can get the same instance of the Product and rely on the value

(213)

of Inventory, and how many will be affected if you introduce a new component that causes
Inventory to change?

For a non-trivial application, it’s very difficult to answer these questions completely. As a result,
mutable state couples the behavior of the various components that read or update that state,
making it difficult to reason about the behavior of the system as a whole.

Finally, shared mutable state implies loss of purity. As explained in chapter 2, mutating global
state (remember, that’s all state that’s not local to a function, including private variables)
constitutes a side effect. So if you represent change in the world by mutating objects in your
system, you lose the benefits of function purity.

For these reasons, when coding functionally, it’s best to avoid state mutation altogether. In this
chapter, you’ll learn how to work with immutable data. That’s an important technique, but keep
in mind that it’s not sufficient to represent entities that change with time. For that, you’ll need
other techniques, which we’ll cover in chapters 10, 12, and 14.

Local mutation is OK

Not all state mutation is equally evil. Mutating local state (state that’s only visible within the
scope of a function) is inelegant but benign. For example, imagine the following function:

int Sum(int[] ints)

{

 var result = 0;

 foreach (int i in ints) result += i;

 return result;

}

Although we’re updating result, this isn’t visible from outside the scope of the function. As a
result, this implementation of Sum is actually a pure function: it has no observable side effects
from the point of view of a calling function.

Naturally, this code is also very low-level. You can normally achieve what you want with built-
in functions like Sum, Aggregate, and so on. In practice, it’s rare that you’ll find a legitimate case
for mutating local variables.

(214)

9.2. Understanding state, identity, and change

Let’s look more closely at change and mutation. By “change,” I mean change in the real world,
such as when 50 units of stock become available for sale. “Mutation” means data is updated in
place; as you saw in the Product class, when the Inventory value is updated, the previous value for
Inventory is lost.

In FP we represent change without mutation: values aren’t updated in place. Instead, we create
new instances that represent the data with the desired changes. The fact that the current level of
inventory is 53 doesn’t obliterate the fact that it was previously 3, as shown in figure 9.2.

Figure 9.2. In FP, change can be represented by creating new versions of the data.

So, in FP, we work with immutable values: once a value is defined, it’s never updated. To refine
our intuition about this, it’s useful to distinguish between things that change and things that
don’t.

9.2.1. Some things never change

There are some things that we think of as inherently immutable. For example, your age may
change from 30 to 31, but the number 30 is still the number 30, and 31 is still 31.

This is modeled in the framework, in that all primitive types are immutable. What about more
complex types? Dates are a good example. The third of March is still the third of March, even
though you may change an appointment in your calendar from the third of March to the fourth.
This is also reflected in the framework, in that DateTime is immutable.

See this for yourself by typing the following in the REPL:

(215)

In the preceding example, we start by saying that Mom and John have the same birthday, so we
assign the same value to momsBirthday and johnsBirthday. When we then use AddDays to create a
later date and assign it to johnsBirthday, this leaves momsBirthday unaffected. In this example, we
are doubly protected from mutating the date:

Because System.DateTime is a struct, it’s copied upon assignment, so momsBirthday and
johnsBirthday are different instances.
Even if DateTime were a class, so that momsBirthday and johnsBirthday pointed to the same
instance, the behavior would still be the same, because AddDays creates a new instance,
leaving the underlying instance unaffected.

If, on the other hand, DateTime were a mutable class, and AddDays mutated the days of its instance,
the value of momsBirthday would be updated as a result—or, rather, as a side-effect—of updating
johnsBirthday. (Imagine explaining to Mom that that’s the reason for your belated birthday
wishes.)

Immutable types in the .NET framework

A few reference types in the framework are immutable. These are the most commonly used:

DateTime, TimeSpan, DateTimeOffset
Delegate

Guid

Nullable<T>

String

Tuple<T1>, Tuple<T1, T2>, ...
Uri

Version

Furthermore, all primitive types in the framework are immutable.

Now let’s define a custom immutable type. Say we represent a Circle like so:

struct Circle

{

 public Point Center { get; }

 public double Radius { get; }

 public Circle(Point center, double radius)

 {

 Center = center;

 Radius = radius;

 }

}

(216)

You would probably agree that it makes no sense that a circle should ever grow or shrink, since
it’s a completely abstract geometric entity. This is reflected in the preceding implementation,
where Radius and Center are getter-only auto-properties whose values can only be set in the
constructor. That is, once created, the state of the circle can never change.[3]

3

In reality, you can still mutate read-only variables by using reflection. But making a field
read-only is a clear signal to any clients of your code that the field isn’t meant to be
mutated.

Structs should be immutable

Notice that I’ve defined Circle as a value type. Because value types are copied when passed
between functions, it makes sense that structs should be immutable. This isn’t enforced by the
compiler, so you could create a mutable struct. If you do, any changes you make to the struct will
propagate down, but not up, the call stack.

If you have a circle, and you’d like a circle double the size, you can define functions to create a
new circle based on an existing one. Here’s an example:

static Circle Scale(this Circle circle, double factor)

 => new Circle(circle.Center, circle.Radius * factor);

OK, so far we haven’t used mutation, and these examples are pretty intuitive. What do numbers,
dates, and geometric entities have in common? The fact that their value captures their identity:
they are value objects. If you change the value of a date...well, it identifies a different date!

The problems begin when we consider objects whose value and identity are different things.
We’ll look at this next.

9.2.2. Representing change without mutation

Many real-world entities change with time: your bank account, your calendar, your contacts list
—all these things have a state that changes with time. (See figure 9.3.)

Figure 9.3. An entity whose state changes over time

(217)

For such entities, their identity isn’t captured by their value, because their identity remains
constant, whereas their value changes with time. Instead, their identity is associated with
different states at different points in time. Your age may change, or your salary, but your identity
doesn’t.

To represent such entities, programs must model not only an entity’s state (that’s the easy part)
but the transitions from one state to another, and often the association of an identity with the
entity’s current state.

We’ve discussed some reasons why mutation provides an imperfect mechanism for managing
state transitions. In FP, states are not mutated; they’re snapshots that, like the frames of a film,
represent an evolving reality but are in themselves static.

To illustrate this idea, let’s start working on AccountState, which we’ll use to represent the state
of a bank account in the BOC application. We’ll start simply, with just a few fields.

Listing 9.2. A simple model for the state of a bank account

public enum AccountStatus

{ Requested, Active, Frozen, Dormant, Closed }

public class AccountState

{

 public AccountStatus Status { get; set; }

 public CurrencyCode Currency { get; set; }

 public decimal AllowedOverdraft { get; set; }

 public List<Transaction> TransactionHistory { get; set; }

 public AccountState()

 => TransactionHistory = new List<Transaction>();

}

In this approach, we’re using an empty constructor and public setters. This allows us to create
new instances elegantly with the object initializer syntax, as in the following listing.

Listing 9.3. Using the convenient object initializer syntax

var account = new AccountState

{

 Status = AccountStatus.Active

};

This creates a new account with the Status property set explicitly; other properties are initialized
to sensible default values. Note that the object initializer syntax calls the parameterless
constructor and the public setters defined in AccountState.

If we want to represent a change in state, such as if the account is frozen, we’d create a new
AccountState with the new Status. We can do this by adding a convenience method on
AccountState.

Listing 9.4. Defining a copy method

(218)

WithStatus is a method that returns a copy of the instance, identical to the original in everything
except the Status, which is as given. This is similar to how we previously obtained a new date by
calling AddDays on a DateTime instance.

Methods like WithStatus are called copy methods, or with-ers because the convention is to name
them “With[Property].” You would then represent a change in the state of the account as follows.

Listing 9.5. Obtaining a modified version of the object

var newState = account.WithStatus(AccountStatus.Frozen);

Every time you want to change a property, you should create a new instance. “But isn’t that
terribly inefficient?” you may be thinking. In fact, this isn’t as inefficient as you might think, as
the “Performance implications” sidebar explains in more detail.

Performance implications of using immutable objects

Working with immutable objects means that you create modified copies rather than mutating the
object in-place. This implies a small performance penalty for creating the modified copy, as well
as creating a greater number of objects that will eventually need to be garbage-collected. This is
also why FP isn’t practical in languages that lack automatic memory management.

The performance impact is smaller than one might think because a typical copy method like
WithStatus creates a shallow copy. That is, objects referenced by the original object aren’t copied;
only the reference is copied. In other words, with the exception of the field being updated, the
new object is a bitwise replica of the original.

(219)

Updated versions can be created inexpensively because only top-level references are copied.

For example, when you create a new AccountState by calling WithStatus, the list of transactions
won’t be copied. Instead, the new object will reference the original list of transactions. (As you’ll
see shortly, this too must be immutable, so it’s OK for two different instances to share it.)

If you apply this principle, copy methods are fast. Of course, in-place updates are even faster, so
there’s a tradeoff between performance and safety. The performance penalty of creating shallow
copies is likely to be negligible in the wide majority of cases, so my advice is to put safety first,
and optimize later as needed.

(220)

9.3. Enforcing immutability

The implementation shown in the previous section uses property setters to initially populate an
object, and copy methods to obtain updated versions. This approach is called immutability by
convention: you use convention and discipline to avoid mutation. The setters are exposed, but
they should never be called after the object has been initialized.

But this doesn’t prevent a mischievous colleague who’s not sold on immutability from setting the
fields directly:

account.Status = AccountStatus.Frozen;

If you want to prevent this, you’ll have to make your object immutable by removing property
setters altogether. New instances must then be populated by passing all values as arguments to
the constructor.

Listing 9.6. Refactoring towards immutability: removing all setters

public class AccountState

{

 public AccountStatus Status { get; }

 public CurrencyCode Currency { get; }

 public decimal AllowedOverdraft { get; }

 public List<Transaction> Transactions { get; }

 public AccountState(CurrencyCode Currency

 , AccountStatus Status = AccountStatus.Requested

 , decimal AllowedOverdraft = 0

 , List<Transaction> Transactions = null)

 {

 this.Status = Status;

 this.Currency = Currency;

 this.AllowedOverdraft = AllowedOverdraft;

 this.Transactions = Transactions ?? new List<Transaction>();

 }

 public AccountState WithStatus(AccountStatus newStatus)

 => new AccountState(

 Status: newStatus,

 Currency: this.Currency,

 AllowedOverdraft: this.AllowedOverdraft,

 Transactions: this.TransactionHistory

);

}

In the constructor, I’ve used named parameters and default values in such a way that I can create
a new instance with a syntax very similar to the object initializer syntax we were using before.
We can now create a new account with sensible values like this:

var account = new AccountState

(

 Currency: "EUR",

 Status: AccountStatus.Active

);

The WithStatus copy method can be called just like before.

Notice that we’ve now enforced that a value must be provided for Currency, which isn’t possible
when you use the object initializer syntax. So we’ve kept readability while making the
implementation more robust.

(221)

Use constructors to enforce business rules

Forcing the clients of your code to use a constructor or a factory function to instantiate an object
improves the robustness of your code, because you can enforce business rules at this point,
making it impossible to create an object in an invalid state, such as an account with no currency.

9.3.1. Immutable all the way down

We’re still not done, because for an object to be immutable, all its constituents must be
immutable too. Here we’re using a mutable List, so your mischievous colleague could still
effectively mutate the account state by writing this:

account.Transactions.Clear();

The most effective way to prevent this is to create a copy of the list given to the constructor, and
store its contents in an immutable list, for which we can use the ImmutableList type in the
System.Collections.Immutable library:[4]

4

The System.Collections.Immutable library was developed by Microsoft to complement the
mutable collections in the framework, so its feel should be familiar. It’s not part of the
framework, so you must get it from NuGet.

Listing 9.7. Preventing mutation by using immutable collection

When a new AccountState is created, the given list of transactions is copied and stored in an
ImmutableList. This is called a defensive copy. Now the list of transactions of an AccountState
can’t be altered by any consumers, and it remains unaffected even if the list given in the
constructor is altered at a later point. Fortunately, Create-Range is smart enough that if it’s given
an ImmutableList, it just returns it, so that copy methods won’t incur any additional overhead.

(222)

Furthermore, Transaction and Currency must also be immutable types. I’ve also marked
AccountState as sealed to prevent the creation of mutable subclasses. Now AccountState is truly
immutable. In theory, that is—in practice, one could still mutate an instance using reflection,[5]

so that your mischievous colleague can still have the upper hand. But at least now there’s no
room for mutating the object by mistake.

5

The utilities in System.Reflection allow you to view and modify the value of any field at
runtime, including private and readonly fields, and the backing fields of auto-properties.

How can you add a new transaction to the list? You don’t. You create a new list that has the new
transaction as well as all existing ones, and that will be part of a new AccountState.

Listing 9.8. Adding a child to an immutable object requires creation of a new parent object

Notice that in this particular case we’re prepending the transaction to the list. This is domain-
specific; in most cases you’re interested in the latest transactions, so it’s most efficient to keep
the latest ones at the front of the list.

Copying a list every time a single element is added or removed may sound terribly inefficient,
but this isn’t necessarily the case. We’ll discuss why in section 9.4.

9.3.2. Copy methods without boilerplate?

Now that we’ve managed to properly implement AccountState as an immutable type, let’s face
one of the pain points: writing copy methods is no fun! Imagine an object with 10 properties, all
of which need copy methods. If there are any collections, you’ll need to copy them into
immutable collections and add copy methods that add items to or remove them from those
collections. That’s a lot of boilerplate!

A way to mitigate this is to write a single With method, with named optional arguments, much
like how we used them in defining the constructor for AccountState.

Listing 9.9. A single With method that can set any property

(223)

The default value of null indicates that the value hasn’t been specified, in which case the current
instance’s value is used to populate the copy. For value-type fields, you can use the
corresponding nullable type for the argument type to allow a default of null. Because the default
value null indicates that the field hasn’t been specified, and hence the current value will be used,
it’s not possible to use this method to set a field to null, but given the discussion on null vs.
Option in chapter 3, you can probably see that this isn’t a good idea anyway.

Notice that in listing 9.9 we’re only allowing changes to two fields, because we’re assuming that
we can never change the currency of a bank account or make arbitrary changes to the transaction
history. This approach allows us to reduce boilerplate while still retaining fine-grained control
over what operations we want to allow. The usage is as follows:

public static AccountState Freeze(this AccountState account)

 => account.With(Status: AccountStatus.Frozen);

public static AccountState RedFlag(this AccountState account)

 => account.With

 (

 Status: AccountStatus.Frozen,

 AllowedOverdraft: 0m

);

This not only reads very clearly but gives us better performance compared to using the classic
With[Property] methods: if we need to update multiple fields, a single new instance is created. I
definitely recommend using this single With method over defining a copy method for every field.

Another approach is to define a generic helper that will do the copying and updating, without the
need for any boilerplate. I’ve implemented such a general-purpose With method in the
LaYumba.Functional.Immutable class, and it can be used as follows.

Listing 9.10. Using a general-purpose copy method

using LaYumba.Functional;

var oldState = new AccountState("EUR", AccountStatus.Active);

var newState = oldState.With(a => a.Status, AccountStatus.Frozen);

oldState.Status // => AccountStatus.Active

newState.Status // => AccountStatus.Frozen

newState.Currency // => "EUR"

Here, With is an extension method on object that takes an Expression identifying the property to
be updated, and the new value. Using reflection, it then creates a bitwise copy of the original
object, identifies the backing field of the specified property, and sets it to the given value.

(224)

In short, it does what we want, but for any field and any type. On the up side, this saves us from
having to write tedious copy methods. On the down side, reflection is relatively slow, and we
lose the fine-grained control available when we explicitly choose what fields can be updated in
With.

As you can see, enforcing immutability is a thorny business, and it’s one of the biggest hurdles
when programming functionally in C#.

9.3.3. Leveraging F# for data types

There is a third option, which is to use F# to model your data objects. When coding functionally,
it’s natural to separate data from behavior: data is encoded in data types that have little or no
behavior (they typically represent the events, view models, data-transfer objects, entities, and
value objects of your domain), whereas behavior is encoded in functions that transform that data
or perform side effects.

This demarcation makes it easy to write your program behavior in C# while taking advantage of
F#’s type system to define your data objects. Learning F# can seem a daunting prospect (and
migrating an existing C# codebase to F# even more so), but I’m not suggesting you do that: I’m
suggesting writing just the data types in F#. This is really easy, and you can get started literally
in minutes.

The F# syntax for declaring types is very clear and concise, and most importantly, all types are
immutable without the need for any extra work.[6] For example, the AccountState type, with all its
subtypes, can be defined in F# as follows.

6

All types in F# are immutable unless you explicitly specify otherwise using the CLIMutable
attribute. This is particularly useful if you’re working with a deserializer that relies on
property setters.

Listing 9.11. Writing the domain model in F#

(225)

This model is equivalent to the C# implementation shown previously, so it should be easy to see
what’s what.

F# has copy methods built in, in the form of copy and update expressions. This allows you to
easily enrich AccountState with copy methods that can be called from C# code, as follows.

Listing 9.12. Using F# copy and update expressions

The first line of the code introduces a list of members, which are functions that will be
“attached” to the AccountState type—you can think of these as extension methods. Thus,
WithStatus and Add will be visible as methods on AccountState from C# code. Their
implementation just relies on copy and update expressions (using the with keyword).

As you can see, you don’t need to become a proficient F# programmer to take advantage of F#’s
powerful type system: the syntactic elements in the previous couple of listings are pretty much
all you need to know to write your domain model in F#. Because this book is specifically about
C#, I won’t pursue this approach, but in a real-world project, mixing the two languages is an
option worth considering.

9.3.4. Comparing strategies for immutability: an ugly contest

To summarize, avoiding mutation and enforcing immutability are different things, and although I
urge you to systematically avoid mutation, enforcing immutability isn’t easily done—and if you
factor in the use of reflection, it can’t be done at all. We’ve discussed a few different approaches,
each with their pros and cons:

(226)

Immutability by convention— In this approach, you don’t do any extra work to prevent
mutation; you just avoid it, like you probably avoid the use of goto, unsafe pointer access,
and bitwise operations, just to mention a few things that the language allows but that have
proven problematic. This can be a viable choice if you’re working independently, or with a
team that’s sold on this approach from day one. The downside is, of course, that mutation
can creep in.
Define immutable objects in C#— This approach will give you a more robust model that
communicates to other developers that the object shouldn’t be mutated. This approach is
much better suited if you’re working on a project where immutability isn’t used across the
board. Compared to immutability by convention, it requires at least some extra work in
defining constructors.
Write data objects in F#— Given the little amount of F# knowledge required to do this,
and the advantages that come with using F#’s type system, this is a very attractive option,
and perhaps the best option as of today. The main caveat is that this may influence your
assembly structure, because F# objects need to go into their own assembly.

The main reason why avoiding mutation in C# can be painstaking—whether enforced or by
convention—is because of the need to define copy methods. If you write your objects in F#, you
can take advantage of copy-and-update expressions. In C#, you can avoid the boilerplate of copy
methods by using the generic, reflection-based With method illustrated in listing 9.10. For
specific cases where the performance impact is noticeable, or you want to have more fine-
grained control over which fields can be affected and how (for example, to permit transactions to
be added to an account, but not removed), manually define copy methods.

If you feel frustrated by the lack of a hard-and-fast solution, you’re in good company. In fact, to
make things even more complicated, third-party libraries may have limitations that dictate your
choices. Traditionally, deserializers and ORMs for .NET have used the empty constructor and
settable properties to create and populate objects. If you’re relying on libraries with such
requirements, immutability by convention may be your only option.

On the up side, this is an area in constant evolution. Improving support for immutability is strong
on the list of features being considered for future versions of the language (remember how getter-
only auto-properties in C# 6 already provided an improvement in this direction).[7] Deserializer
libraries are also evolving and improving support for creating objects via the constructor, in the
absence of property setters.

7

Most importantly, one proposal for C# 7 was the introduction of record types. Like record
types in F#, these would be immutable and feature a new syntax for copy-and-update
expressions. Although this feature didn’t make it into C# 7, we may yet see it in future
versions.

Now that you know about immutable objects, let’s look at some of the principles behind the
design of immutable data structures. You’ll see that the principles are the same—after all, objects
are just ad hoc data structures.

(227)

9.4. A short introduction to functional data structures

The pitfalls of mutation are particularly evident when dealing with data structures: because it
takes longer to process a large collection than to update a single object, there are greater chances
of a race condition occurring between different threads accessing the same collection
concurrently. You saw an example of this in chapter 1.

If you commit to only working with immutable data, all data structures should also be
immutable. For example, you should never add an element to a list or one by changing its
structure, but rather create a new list with the desired changes.

This may initially cause you to raise your eyebrows: “To add an item to a list, I need to copy all
existing elements into a new list along with the extra item? How inefficient is that?”

To give you an idea of why this isn’t necessarily inefficient, let’s look at some simple functional
data structures. You’ll see that adding a new element to a collection does yield a new collection,
but this doesn’t involve copying every item in the original collection.

Note

The implementations shown in this section are very naive. They’re helpful in understanding the
basic concepts, but they’re not for use in production. For real-world applications, use a proven
library, such as System.Collections.Immutable.

9.4.1. The classic functional linked list

We’ll start with the classic functional linked list. While deceptively simple, this is the basic list
you’ll find in the core library of most functional languages. Symbolically, we can describe it as
follows:

List<T> = Empty | Cons(T, List<T>)

In other words, a List of T’s can be one of two things:

Empty—A special value representing the empty list
Cons—A non-empty list “cons-tructed” from two values:

A single T, called the head and representing the first element in the list
Another List of T’s, called the tail, representing all the other elements

The tail can, in turn, be Empty or a Cons, and so on. Thus, List is an example of a recursive type: a
type that’s defined in terms of itself. This is how with just two cases we can cater for lists of any
length.

For example, the structure of a list containing ["a", "b", "c"] is as follows:

Cons("a", Cons("b", Cons("c", Empty)

(228)

It can be represented graphically as in figure 9.4, where each Cons is represented as a box with a
value (the head) and a pointer to the rest of the list (the tail).

Figure 9.4. A linked list containing the values ["a", "b", "c"]

Let’s look at how we can implement this in C#. I’ll simply use a bool to indicate whether we’re
in the Empty case.

Listing 9.13. Implementation of a functional singly linked list

This looks almost too simple. The only way to interact with a list is with Match, which will
execute different paths depending on whether the list is empty or not. If the list isn’t empty, the
function given to Match is given the head and tail of the list.

In fact, we can implement all the common operations you’d expect on a list in terms of Match, and
they always rely on the type’s recursive definition. For example, if you want to know the length
of the list, you Match—the empty list obviously has length 0, whereas the non-empty list has the
length of its tail plus 1:

public static int Length<T>(this List<T> list)

(229)

 => list.Match(

 Empty: () => 0,

 Cons: (head, tail) => 1 + tail.Length());

You may have noticed that both constructors are marked as internal. As usual, I’ll expose factory
functions through a static class.

In many cases, creating the whole structure explicitly with new List("a", new List("b", ...
would be tedious, so let’s add a list initializer to which we can pass a few hard-coded items:

public static class LinkedList

{

 public static List<T> List<T>(T h, List<T> t)

 => new List<T>(h, t);

 public static List<T> List<T>(params T[] items)

 => items.Reverse().Aggregate(new List<T>()

 , (acc, t) => List(t, acc));

}

The first factory function just calls the List constructor, which takes a head and a tail. The
following function is a convenience list initializer. The params keyword already collects all the
arguments into an array, so we just need to “translate” the array into a suitable combination of
Empty and Cons. That’s done with Aggregate, using Empty as the accumulator, and creating a Cons in
the reducer function. Because List prepends the item to the list, we must reverse the list first.

Now that you’ve seen the main building blocks, let’s play with List in the REPL. The data
structures discussed in this section are defined in the LaYumba.Functional.Data assembly, so you’ll
need to import it and the relevant namespaces first:

#r "functional-csharp-code\LaYumba.Functional.Data\bin\Debug\netstandard1.6\

 LaYumba.Functional.Data.dll"

using LaYumba.Functional.Data.LinkedList;

using static LaYumba.Functional.Data.LinkedList.LinkedList;

var empty = List<string>();

// => []

var letters = List("a", "b");

// => [a, b]

var taxi = List("c", letters);

// => [c, a, b]

This code demonstrates how you can create a list, empty or prepopulated, and how you can
create a Cons by adding a single item to an existing list.

Common list operations

Let’s now look at how we can perform some common operations with this list, like those we’ve
become accustomed to with IEnumerable. For example, here’s Map:

public static List<R> Map<T, R>(this List<T> list, Func<T, R> f)

 => list.Match(

 () => List<R>(),

 (head, tail) => List(f(head), tail.Map(f)));

Map takes a list and a function to be mapped onto the list. It then uses pattern matching: if the list
is empty, it returns an empty list; otherwise, it applies the function to the head and recursively
maps the function onto the tail, and returns the Cons of these two.

(230)

If we had a list of integers and wanted the sum, we could implement this along the same lines:

public static int Sum(this List<int> list)

 => list.Match(

 () => 0,

 (head, tail) => head + tail.Sum());

As you know, Sum is a special case of Aggregate, so let’s see how we could implement the more
generic Aggregate for List:

public static Acc Aggregate<T, Acc>

 (this List<T> list, Acc acc, Func<Acc, T, Acc> f)

 => list.Match(

 () => acc,

 (head, tail) => Aggregate(tail, f(acc, head), f));

Again, we pattern match, and in the Cons case we apply the reducer function f to the accumulator
and the head. Then we recursively call Aggregate with the new accumulator and the tail of the list.

Warning

The implementations shown here aren’t stack-safe. That is, if the list is long enough, they’ll
cause a StackOverflowException.

Now that we’ve looked at how we can work with the linked list, let’s see about operations that
“modify” the list.

Modifying an immutable list

Let’s say we want to “add” an item to an existing list (by which I naturally mean we’ll obtain a
new list with an additional item). With a singly linked list, the natural approach is to add items at
the front:

public static List<T> Add<T>(this List<T> list, T value)

 => List(value, list);

Given an existing list and a new value, we just construct a new list with a new head. The head of
the new list will be a list node holding the new value and a pointer to the head of the original list.
That’s all! There’s no need to copy all the elements, so we can add an element in constant time,
creating just one new object.

Here’s an example of adding to our immutable linked list:

var fruit = List("pineapple", "banana");

// => ["pineapple", "banana"]

var tropicalMix = fruit.Add("kiwi");

// => ["kiwi", "pineapple", "banana"]

var yellowFruit = fruit.Add("lemon");

// => ["lemon", "pineapple", "banana"]

The fruit list is initialized with two items. We then “add” a third fruit to obtain a new list,
tropicalMix. Because the list is immutable, our original fruit list hasn’t changed and still
contains two items. This is apparent because we can reuse it to create a new, modified version of

(231)

the list containing yellow fruit.[8]

8

Immutable data structures are often referred to as persistent data structures. The term
“persistence” in this context doesn’t indicate persistence onto some media, but simply
persistence in memory: the original data structure is unaffected by any operation that creates
a new version, such as adding or removing elements. Furthermore, the term “persistent”
applied to a data structure implies that it offers certain guarantees in terms of the running
time of certain operations. Namely, operations should be just as efficient in a persistent data
structure as in the corresponding mutable structure, or at least be within the same order of
magnitude. This goes deeper into data structure and algorithm design, so here I’ll just stick
with the terms immutable/functional data structures/collections.

Figure 9.5 offers a graphical representation of the objects that are created in the code above, and
shows that the original fruit list is not altered, nor do its elements need to be copied, when
creating new lists with an added item.

Figure 9.5. Adding an item to a list doesn’t affect the original list.

Think what this means in terms of decoupling: when you have an immutable list—and more
generally, an immutable object—you can expose it without ever having to worry about what
some other component will do to the data. There’s nothing they can do to the data at all!

What about removing an item? The singly linked list is biased to work well with the first item, so
we’ll remove the first item (the head) and return the rest of the list (the tail):

public static List<T> Tail<T>(this List<T> list)

 => list.Match(

 () => { throw new IndexOutOfRangeException(); },

 (_, tail) => tail);

Again, we can remove the first element from the list in constant time, and without altering the
original list. (Notice that this is one of very few places where throwing an exception is justified,
because calling Tail on an empty list is a developer error. If there’s a chance of the list being
empty, a correct implementation should use Match rather than calling Tail.)

You may find these examples rather limited because we’ve only interacted with the first element
of the list. But in practice, this can be used to cover quite a number of use cases. For example,
it’s a perfect starting point if you need a stack. Common operations like Map and Where would be
O(n) for a list of length n, just as with any other list.

You can define functions to insert or remove an element at index m, and these operations are
O(m), because they would require traversing m elements and creating m new Cons objects. If you

(232)

need to append or remove from the end of a long list often (for example, if you need to
implement a queue), you’d use a different data structure.

9.4.2. Binary trees

Trees are also very common data structures. Most list implementations other than linked lists use
trees as their underlying representation, because this allows certain operations to be performed
more efficiently. We’ll just look at a very basic binary tree,[9] defined as follows:

9

“Binary” here means that every branch has two subtrees.

Tree<T> = Leaf(T) | Branch(Tree<T>, Tree<T>)

That is, a tree can be a Leaf, which is a terminal node and contains a T, or it can be a Branch, a
non-terminal node that contains two children or “subtrees,” which can in turn be leaves or
branches, and so on recursively.

With List, I used a single class to represent both the Empty and Cons cases. Here, the possible
values for a tree are a bit more complex, so I’ll represent each case with a different type:

public abstract class Tree<T> { }

internal class Leaf<T> : Tree<T>

{

 public T Value { get; }

}

internal class Branch<T> : Tree<T>

{

 public Tree<T> Left { get; }

 public Tree<T> Right { get; }

}

In other words, rather than using a Boolean, I’m using the type system to tell me whether a
particular tree is a Branch or a Leaf. We still need an implementation of Match to execute different
code in each case and to access the tree’s inner value. This can be implemented as follows:

public abstract class Tree<T>

{

 public abstract R Match<R>

 (Func<T, R> Leaf, Func<Tree<T>, Tree<T>, R> Branch);

}

public class Leaf<T> : Tree<T>

{

 public override R Match<R>

 (Func<T, R> Leaf, Func<Tree<T>, Tree<T>, R> Branch)

 => Leaf(Value);

}

public class Branch<T> : Tree<T>

{

 public override R Match<R>

 (Func<T, R> Leaf, Func<Tree<T>, Tree<T>, R> Branch)

 => Branch(Left, Right);

}

Here, I’ve declared a Match method with the desired signature in the abstract Tree class; each
subclass provides an implementation that calls the appropriate function. The runtime will then
decide which overload to execute.[10]

10

(233)

You may dislike the fact that the base class “knows” about the subclasses. If you think
about this code in terms of inheritance, this would indeed be a violation of the Open-Closed
principle: if you added a new subclass, you’d have to modify the base class. But in this case,
inheritance is an implementation detail, and Tree isn’t meant to be open for extension. There
should never be any subclasses of Tree other than Leaf and Branch (unfortunately, the
language doesn’t let us express this). The Match methods are just surrogates for the lack of a
good syntax for pattern matching in C#. Again, there are good indications that this will
improve in future versions.

From the caller’s point of view, it’s Match as usual:

myTree.Match(

 Leaf: t => $"It's a leaf containing '{t}'",

 Branch: (left, right) => "It's a branch");

I’ve omitted the usual creational boilerplate: constructors and factory functions Leaf and Branch.
These are included in the code samples, and they allow you to create a tree in the REPL like this:

using static LaYumba.Functional.Data.BinaryTree.Tree;

Branch(

 Branch(Leaf(1), Leaf(2)),

 Leaf(3)

)

That would represent a tree like this:

Now let’s look at some common operations. What about Map? Try to avoid looking at the
following solution and write down how you think Map might work. Naturally, Map should create a
new tree. You can pattern-match, and if you have a leaf, then you extract its value, apply the
function to the leaf, and wrap it in a new leaf. Otherwise, you create a new branch whose left and
right subtrees are the result of mapping the function onto the original subtrees:

(234)

public static Tree<R> Map<T, R>(this Tree<T> tree, Func<T, R> f)

 => tree.Match(

 Leaf: t => Leaf(f(t)),

 Branch: (left, right) => Branch

 (

 Left: left.Map(f),

 Right: right.Map(f)

)

);

Map yields a new tree, isomorphic to the original one, with the mapped function applied to each
value in the original tree, as shown in figure 9.6.

Figure 9.6. The Map function for a binary tree

It’s also reasonable to define an Aggregate function that reduces all the values in the tree to a
single value:

public static Acc Aggregate<T, Acc>

 (this Tree<T> tree, Acc acc, Func<Acc, T, Acc> f)

 => tree.Match(

 Leaf: t => f(acc, t),

 Branch: (l, r) =>

 {

 var leftAcc = l.Aggregate(acc, f);

 return r.Aggregate(leftAcc, f);

 });

More interestingly, let’s look at operations that change the structure of a tree, such as inserting an
element. Here’s a very simple implementation.

Listing 9.14. Adding a value to an immutable tree

public static Tree<T> Insert<T>(this Tree<T> tree, T value)

 => tree.Match(

 Leaf: _ => Branch(tree, Leaf(value)),

 Branch: (l, r) => Branch(l, r.Insert(value)));

As usual, the code uses pattern matching. If the tree is a leaf, it creates a branch whose two
children are the leaf itself, and a new leaf with the inserted value; if it’s a branch, it inserts the
new value into the right subtree.

For example, if you start with a tree containing {1, 2, 3, 7} and insert the value 9, the result
would be as shown in figure 9.7. As you can see, the new tree shares large portions of its

(235)

structure with the original tree. This is an example of the more general idea of structure sharing;
that is, the updated collection shares as much of its structure as possible with the original
collection.

Figure 9.7. The tree with the added value shares parts of the structure with the original tree.

How many new items are created to insert an item into a tree? As many as it takes to reach a leaf.
If you start with a balanced tree with n elements,[11] an insert involves the creation of log n + 2
objects, which is very reasonable.[12]

11

A tree is balanced if all paths from the root to a leaf have the same length, or differ at most
by one.

12

The base of the log will be the arity of the tree: how many children each node has. A real-
world implementation of a tree underlying a list representation may have an arity of 32, so
that after inserting 1 million objects, your tree may still only have a depth of 2 or 3 levels.

Of course, the implementation in listing 9.14 would eventually lead to a very imbalanced tree,
because it always adds elements to the right. To guarantee efficient inserts, we’d need to refine
the tree representation to include a self-balancing mechanism. This is certainly possible, but
beyond the scope of this introduction.

Developing efficient functional data structures is a vast and fascinating topic, of which we’ve
only scratched the surface.[13] Nonetheless, in this section you’ve gained some insight into the
inner workings of functional data structures and the idea of structure sharing, which allows
immutable data structures to be safe and perform well.

13

The reference book on the subject is Purely Functional Data Structures by Chris Okasaki

(236)

(Cambridge University Press, 1999). Unfortunately the code samples are in Standard ML.

Functional programs may incur some performance penalty for copying data rather than updating
it in-place, but imperative programs may have to introduce locking and defensive copies to
ensure correctness. As a result, functional programs tend to perform better in many scenarios.
For most practical applications, however, performance isn’t the critical concern, but rather the
greater reliability that you gain by embracing immutability.

Exercises

1. Lists—implement functions to work with the singly linked List defined in this chapter:

1. InsertAt inserts an item at the given index.
2. RemoveAt removes the item at the given index.
3. TakeWhile takes a predicate and traverses the list, yielding all items until it finds one

that fails the predicate.
4. DropWhile works similarly, but excludes all items at the front of the list.
5. What’s the complexity of these four functions? How many new objects are required

to create the new list?
6. TakeWhile and DropWhile are useful when working with a list that’s sorted and you’d

like to get all items greater or smaller than some value. Write implementations that
take an IEnumerable rather than a List.

2. Trees:

1. Is it possible to define Bind for the binary tree implementation shown in this chapter?
If so, implement Bind; otherwise explain why it’s not possible. (Hint: start by writing
the signature, and then sketch a binary tree and how you could apply a tree-returning
function to each value in the tree.)

2. Implement a LabelTree type, where each node has a label of type string and a list of
subtrees. This could be used to model a typical navigation tree or a category tree in a
website.

3. Imagine you need to add localization to your navigation tree. You’re given a
LabelTree where the value of each label is a key, and a dictionary that maps keys to
translations in one of the languages that your site must support. You need to
compute the localized navigation/category tree. (Hint: define Map for LabelTree.)

4. Unit test the preceding implementation.

Summary

The FP paradigm discourages state mutation, preventing several drawbacks associated
with state mutation, such as lack of thread safety, coupling, and impurity.
Things that don’t change are represented with immutable objects.
In FP, things that change are also represented with immutable objects; these immutable
snapshots represent an entity’s state at a given point. Change is represented by creating a
new snapshot with the desired changes.
Enforcing immutability in C# is doable, but laborious; using immutability by convention,
or modeling domain objects in F# are alternatives worth considering.
Like objects, collections should also be immutable, so that existing collections are never
altered, but rather new collections are created with the desired changes.
Immutable collections can be safe as well as efficient, because an updated version shares

(237)

much of its structure with the original collection without affecting it.

(238)

Chapter 10. Event sourcing: a functional approach to
persistence
This chapter covers

Thinking functionally about persisted data
Event sourcing concepts and implementation
Architecture of event-sourced systems

In the last chapter, you saw that in FP we avoid mutating state, especially global state. Did I
mention that the database is also state, so it too should be immutable? What? Yes, didn’t you see
this one coming? A database is, conceptually, just a data structure. Whether it’s stored in
memory or on disk is ultimately just an implementation detail.

You saw how functional data structures, although immutable, can “evolve.” That is, you can
create new “states” or new “views” of any given structure, which are built upon, but don’t alter,
the original structure. This idea, which we explored with respect to objects, lists, and trees,
naturally applies to in-memory data just as to stored data, and this is how our applications can
represent change without mutation, even at the database level.

There are currently two approaches to this idea of append-only data storage:

Assertion-based— Treats the DB as an ever-growing collection of facts that are true at a
given point in time
Event-based— Treats the DB as an ever-growing collection of events that occur at given
points in time

In both cases, data is never updated or deleted, only appended.[1] I’ll compare these two
approaches in more detail at the end of the chapter, but most of the chapter will be spent
discussing the event-based approach, usually referred to as event sourcing (ES). This is because
it’s easier to understand and to implement using various kinds of backing storage, and its
adoption in the .NET community so far has been much wider.

1

The traditional functions of a relational DB are the CRUD operations: create, read, update,
and delete. The functional approach to data storage is CRA: create, read, append.

(239)

10.1. Thinking functionally about data storage

Many server applications today are inherently stateless; that is, when they receive a request, they
retrieve the required data from the database, do some processing, and persist the relevant changes
(see figure 10.1). A vast majority of server applications follow this approach.

Figure 10.1. So-called stateless servers usually rely on a big blob of mutable data called the DB.

Indeed, this approach has proven effective precisely because state is such a major source of
complexity. If you can get the data out of thin air, as it were, when you need it, then a lot of
difficult problems go away. This is, in essence, what stateless server processes do.

This also means that it’s relatively easy to avoid state mutation in a stateless server: just create
new, updated versions of the data, and persist those to the database. But we’re fooling ourselves
if we think that we’re developing functionally, if values in the DB are being updated or deleted
in the process. Whenever we develop an application with a CRUD approach—that is, updating
stored data in-place—we’re essentially using the DB as a big blob of global mutable state.

10.1.1. Why data storage should be append-only

(240)

Relational databases have been in use for some 40 years. They were conceived in a time when
disk space was scarce, so using it efficiently was paramount. Typically, only the “current state”
was stored. When a customer changed address, the old address was overwritten with the new one
—a mindset we still have today, even though it’s now become completely obsolete.

Today, in the age of big data, the tables are turned: storage is cheap, and data is valuable.
Overwriting data is like throwing money out the window. Say that a customer removes an item
from their shopping basket: what do you do? Do you delete a row in the database? If you do,
you’ve just deleted valuable information that might be useful in determining why certain items
aren’t selling as expected. Maybe customers often abandon certain items mid-purchase and
replace them with cheaper items from the suggestions list. If you delete the data, you can never
run this sort of analysis.

This is why the idea of append-only storage has gained traction: never delete or overwrite any
data, and only append new data. (For example, think about the version control system you use to
store your code: does it overwrite existing code when you commit new changes?)

Append-only storage has another great virtue: it eliminates the problem of database contention.
DB engines internally use locks to ensure that concurrent connections modifying the same cells
don’t conflict with each other. For instance, imagine you have an e-commerce site, and there’s a
rush of purchases for one particular product. If the inventory count for that product is modeled as
a value in a DB cell that’s updated as orders are placed, that puts contention on that cell, making
database access inefficient. An append-only approach, such as event sourcing, eliminates this
problem.

Let’s see what event sourcing looks like.

10.1.2. Relax, and forget about storing state

We’re overly concerned with representing state. In fact, we take it for granted that we must
persist state. But this tacit assumption is unfounded: it’s just the effect of relational databases
being prevalent for half a century.

An important idea in chapter 9 was the relation of states to entities. States are snapshots of an
entity at a given time; conversely, an entity is a sequence of logically related states. State
transitions cause a new state to be associated with the entity, or, more intuitively, cause the entity
to go from one state to the next.

For example, your bank account is in one state now, and it will be in a different state tomorrow
as the result of some events, like deposits, withdrawals, or interest charges, that cause the account
to transition from one state into the next. This is illustrated in figure 10.2.

Figure 10.2. An entity as a sequence of logically related states

(241)

In relational databases, we tend to only store the latest state of an entity, overwriting previous
states. When we really need to know about the past, we often use history tables, in which we
store all snapshots. This approach is inefficient, because we’re duplicating all the data that hasn’t
changed between snapshots, and it’s ineffective, because we must run complicated logic to
compare two states if we want to figure out what caused the changes.

Event sourcing (ES) turns things around: it shifts the focus from states to state transitions.
Instead of storing data about the states, it stores data about the events: it’s always possible to
reconstruct the current state of an entity by “replaying” all the events that affected the entity.

Figure 10.3 is the same as the previous one, but the focus has changed. We don’t want to focus
on state: state is secondary. In fact, an entity’s state is (literally) a function of its event history.

Figure 10.3. Shifting the focus from states to state transitions

It’s difficult, given two states, to figure out what event may have caused the transition, but it’s
easy to figure out the new state, given an event and the previous state. So in ES, we persist data
that captures details about events, not states.

(242)

10.2. Event sourcing basics

Next, we’ll look at how we can apply these ideas in practice, illustrating them through our BOC
scenario. You’ll see how

Events can be represented as simple, immutable data objects capturing details of what
happened.
States can also be represented as immutable data objects, although they may have a more
complex structure than events.
State transitions can be represented as functions that take a state and an event, and produce
a new state.

Finally, you’ll see how you can recreate an entity’s state from its event history.

10.2.1. Representing events

Events are really simple, and they should be really simple. They’re just plain data objects that
capture the minimum amount of information required to faithfully represent what happened. For
example, here are some events that represent things that may affect a bank account.

Listing 10.1. Some events affecting a bank account

(243)

The preceding events are only a subset of the events that might affect an account (most
obviously, we’re missing cash withdrawals and credited transfers), but they’re representative
enough that, with these examples, you could figure out how any other event would be handled.

Events should be treated as being immutable: they represent things that happened in the past, and
there’s no changing the past. They are persisted to storage, so they must also be serializable.

10.2.2. Persisting events

If you look at the sample events in listing 10.1 with a view to persisting them to a DB, you’ll
immediately notice that all the events have a different structure—different fields—so you can’t
store them in a fixed-format structure like a relational table.

There are various options for storing events. In order of preference, you should consider using
the following:

A specialized event DB such as Event Store (https://geteventstore.com).
A document database such as Redis, MongoDB, and others. These storage systems make
no assumptions about the structure of the data they store.
A traditional relational DB such as SQL Server.

Event store vs. Event Store

Whatever storage you use to persist your events is generally referred to as an event store. Don’t
confuse this with Event Store (always capitalized in this chapter), which is a specific product that
includes an event store and much related functionality.

If you opt to store events in a relational DB, you’ll need an events table with some header
columns such as EntityId and Timestamp, which you’ll need in order to query the event history of
an entity (sorted, and potentially filtered by timestamp). The event payload is serialized into a
JSON string and stored into a wide column, as illustrated in table 10.1.

(244)

https://geteventstore.com

Table 10.1. Event data can be stored in a relational DB table.

EntityId Timestamp EventType Data

abcd 2016-07-22 12:40 CreatedAccount { “Currency”: “EUR” }

abcd 2016-07-30 13:25 DepositedCash { “Amount”: 500, “BranchId”:
“BOCLHAYMCKT” }

abcd 2016-08-03 10:33 DebitedTransfer { “DebitedAmount”: 300,
“Beneficiary”: “Rose Stephens”, ...}

All three storage options are viable; it just depends on your requirements and existing
infrastructure. If most of your data is already in a relational DB, and you only want to event
source some entities, then using that same DB may make sense, because it would involve less
operational overhead.

10.2.3. Representing state

We spent much of chapter 9 discussing how to represent state, so we’re already in a pretty good
position. But now we must ask the question, if we’re using events for persistence, what exactly is
the purpose of these states or snapshots? It turns out that they are needed for various completely
independent purposes:

We need snapshots to make decisions on how to process commands. For example, if we
receive a command that we should make a transfer, and the account is frozen or has an
insufficient balance, then we must reject the command.
We also need snapshots to display to users. I’ll refer to these as view models.[2]

2

Running complex analytics on data stored as events can be inefficient, so you may
also decide to store snapshots for this reason. These snapshots are called projections
and are updated as the events occur, to make the data available for querying in an
efficient format. They’re not fundamentally different from view models—more
precisely, you can think of a view model as a projection—so I won’t deal with
projections specifically in this book.

Let’s start with the first type of snapshot. We need an object that will capture just what we need
in order to make decisions about how to handle commands. The following listing shows such an
object that models the account state.

Listing 10.2. A simplified model of the entity state

public sealed class AccountState

{

 public AccountStatus Status { get; }

 public CurrencyCode Currency { get; }

 public decimal Balance { get; }

 public decimal AllowedOverdraft { get; }

 public AccountState WithStatus(AccountStatus newStatus) // ...

 public AccountState Debit(decimal amount)

 => Credit(-amount);

(245)

 public AccountState Credit(decimal amount)

 => new AccountState(

 Balance: this.Balance + amount,

 Currency: this.Currency,

 Status: this.Status,

 AllowedOverdraft: this.AllowedOverdraft

);

}

This is our usual, dumb, immutable data object with read-only properties, some copy methods
such as WithStatus, and the more meaningfully named Debit and Credit methods, which are also
just copy methods and contain no business logic.

You’ll notice that this is somewhat simplified compared to the examples shown in the last
chapter. For instance, I don’t have a list of transactions because I’m assuming that the current
balance and the account status are enough to make decisions about how to handle any
commands. Transactions may be shown to the user, but they’re not required when processing
commands.

10.2.4. An interlude on pattern matching

Before we move on, we must take a detour to discuss pattern matching. We want to have
different behavior depending on the type of event that has occurred, but C# lacks good support
for this; hence the digression. If you want to stay focused on ES, skip ahead to section 10.2.5 and
come back to this section later.

C#’s incipient support for pattern matching

Pattern matching is a language feature that allows you to execute different code depending on the
“shape” of some data—most importantly, its type. It’s a staple of functional languages. You can
think of the classic switch statement as a very limited form of pattern matching, because you can
only match on the exact value of an expression. What if you want to match on the type of an
expression?

For example, suppose you have the following simple domain:

enum Ripeness { Green, Yellow, Brown }

abstract class Reward { }

class Peanut : Reward { }

class Banana : Reward { public Ripeness Ripeness; }

Up to C# 6, computing a description of a given Reward had to be done as follows.

Listing 10.3. Matching on the type of an expression in C# 6

string Describe(Reward reward)

{

 Peanut peanut = reward as Peanut;

 if (peanut != null)

 return "It's a peanut";

 Banana banana = reward as Banana;

 if (banana != null)

 return $"It's a {banana.Ripeness} banana";

 return "It's a reward I don't know or care about";

(246)

}

For such a simple operation, this is incredibly tedious and noisy. C# 7 introduces some limited
support for pattern matching, so that the preceding code could be abridged as follows.

Listing 10.4. Matching on type in C# 7 with is

string Describe(Reward reward)

{

 if (reward is Peanut _)

 return "It's a peanut";

 else if (reward is Banana banana)

 return $"It's a {banana.Ripeness} banana";

 return "It's a reward I don't know or care about";

}

Or, alternatively, using the switch statement as follows.

Listing 10.5. Matching on type in C# 7 with switch

string Describe(Reward reward)

{

 switch (reward)

 {

 case Peanut _:

 return "It's a peanut";

 case Banana banana:

 return $"It's a {banana.Ripeness} banana";

 default:

 return "It's a reward I don't know or care about";

 }

}

This is still fairly awkward, especially because in FP we’d like to use expressions, whereas both
if and switch expect statements in each branch.

A custom solution for expression-based pattern matching

Improvements to pattern matching are planned for future versions of C#,[3] but I don’t want to
wait that long, so I’ve included in LaYumba.Functional a Pattern class to help out. Using this
implementation, the previous function can be rewritten as follows.

3

Documentation is currently available on
https://github.com/dotnet/roslyn/blob/master/docs/features/patterns.md.

Listing 10.6. A custom Pattern class enabling expression-based pattern matching

(247)

https://github.com/dotnet/roslyn/blob/master/docs/features/patterns.md

This isn’t as good as first-class language support, but it’s still an improvement. You first set up
the functions that handle each case (internally, Pattern is essentially a list of functions, so I’m
using list initializer syntax). You can optionally call Default to provide a default value, or
handler, to use if no matching function is found. Finally, you use Match to supply the value to
match on; this will evaluate the first function whose input type matches the type of the given
value.

There’s also a non-generic version of Pattern, in which Match returns dynamic. You could use this
in the preceding example by simply omitting <string>, making the syntax a bit cleaner still.

Note that all the Match methods you’ve seen so far (for Option, Either, List, Tree, and so on)
simply mimic what you’d be able to do with pattern matching in a language that supports it.
Defining such methods makes sense when you know from the start all the cases you’ll need to
handle (for instance, Option can only be Some or None). By contrast, the Pattern class is useful for
types that are open for inheritance, like Event or Reward, where you can envisage adding new
subclasses as the system evolves.

Matching on the structure of a list

Sometimes it’s useful to match not only on the type in question, but on its inner structure. For
example, you may want to execute different code depending on whether a list is empty or not.
You saw how to do this with the functional linked list, for which we defined Match to use
different handlers for the Empty and Cons cases. As a reminder, here’s an example of using Match to
compute the length of a list:

public static int Length<T>(this List<T> list)

 => list.Match(

 () => 0,

 (_, tail) => 1 + tail.Length());

A Match method with the same semantics can be defined to work for any IEnumerable and can be
implemented as follows:

(248)

Here Match takes a handler for the case in which the IEnumerable is empty, and another handler
accepting its head and tail. You’ll see an example of using this when computing an entity’s state
from its event history—an entity whose history is an empty list doesn’t exist, so it should receive
special treatment.

With these pattern matching utilities in place, let’s go back to discussing ES.

10.2.5. Representing state transitions

Now let’s see how states and events are combined in state transitions. Once you have a state and
an event, you can compute the next state by applying the event to the state. This computation is
called a state transition, and it’s a function whose signature has this general form:

state → event → state

In other words, “Give me a state and an event, and I’ll compute the new state after the event.”
Particularized for our scenario, this signature becomes

AccountState → Event → AccountState

Here, Event is the base class from which all our events derive, so an implementation must pattern
match on the type of the event and then compute a new AccountState with the relevant changes.

There’s also one special state transition, which is when an account is first created. In that case we
have an event, but no prior state, so the signature is in this form:

event → state

The following listing shows the implementation for our scenario.

Listing 10.7. Modeling state transitions

(249)

The first method is the special case of creation: it takes a CreatedAccount event and creates a new
AccountState populated with values from the event. Here we also have some business logic: we
say that an account is Active as soon as it’s created.

The Apply method is the more general formulation of a state transition, and it will process all
other types of events, pattern matching on the event type: if the event is FrozeAccount, we return a
new state that has status Frozen; if the event is DepositedCash, we call Credit, which returns a new
state that has the balance increased accordingly; and so on. In a real application, you’d have
many more types of events here.

10.2.6. Reconstructing the current state from past events

Now that you’ve seen how to represent states and events, and how to combine them with state
transitions, you’re ready to see how an entity’s current state can be computed from the history of
events that affected that entity in the past.

Listing 10.8. Recovering the present state of an entity from its event history

Let’s look at the signature first. We’re taking a sequence of events: the entity’s history. This is
the list of events you get from the DB when you query all events for a given EntityID. I’m
assuming that the sequence is sorted: events that happened first should be at the top of the list.
You must enforce this when you retrieve events from the database, and this often comes for free:
because events are persisted as they occur, they’re appended in order, and this ordering is

(250)

normally preserved when they’re retrieved.

The desired return value is an AccountState, but here it’s wrapped in an Option. This is where the
previously discussed implementation of Match for IEnumerable comes in handy. If the history is
empty, which means that there’s no recorded history of that entity, the entity doesn’t exist in the
system, so the code returns None. Otherwise the sequence must contain a CreatedAccount at the
head of the list, with the tail containing all following events. In this case, the code creates the
initial state from the CreatedAccount event and uses that as an accumulator to Aggregate, which
applies all subsequent events to the state, finally obtaining the current state.

Notice that if you wanted to see not the current state of the account, but its state at any point in
the past, this can be done trivially by evaluating the very same function but filtering to exclude
events past the desired date. For this reason, event sourcing is a very valuable model when you
need an audit trail and to see how an entity has changed through time.

Figure 10.4. Recovering the present state of an entity from its event history

Now that you’ve seen how event sourcing offers a viable, append-only model for persistence,
from which present or past states can be easily computed, let’s see what an event-sourced system
looks like from a high-level architectural point of view.

(251)

10.3. Architecture of an event-sourced system

The data flows in an event-sourced system are different from those in a traditional system, where
data is backed up by a relational store. As figure 10.5 shows, in CRUD-oriented systems the
program deals in entities, or, better, in states. States are saved in the DB, states are retrieved by
the server, and states are sent to the client. The transformations between the “model” (the data
stored in the DB) and the “view model” (the data sent to the client) are often very minor.

Figure 10.5. High-level comparison of data flows in a traditional vs. event-sourced system.

In an event-sourced system, things are quite different. What we persist is events. But users won’t
want to see an event log, so the data that we surface for the users’ consumption must be
structured in a meaningful way. For this reason, an event-sourced system can be split neatly into
two separate parts:

The command side— This side has the job of writing data, which consists mainly of
validating commands received from users. Valid commands will result in events being
persisted and propagated.
The query side— This side has the job of reading data. View models are dictated by what
you want to show on the client, and the query side must populate those view models from
the stored events. Optionally, the query side can also publish notifications to the client
when new events cause the views to change.

This natural split between the command and query sides results in smaller, more focused
components. It also gives you flexibility: the command and query sides can be completely
separate applications and can therefore be scaled and deployed independently. This is
advantageous when you think that the load on the query side is likely to be much greater than on

(252)

the command side. For example, think about how little data you post when you visit a site like
Twitter or Facebook, compared to the amount of data you retrieve.

Conversely, on the command side, you may need to synchronize writes to prevent concurrent
changes. This is much more easily accomplished if there’s a single instance of the command
side. So this separation (which goes by the name of CQRS, for command/query responsibility
segregation), allows you to easily scale the data-intensive query side to satisfy demand, while
keeping fewer or perhaps even a single instance of the command side.

The command and query sides don’t have to be separate applications. Both can live in the same
application. But if you use event sourcing, there will still be an internal separation between the
two sides. Let’s see how you could go about implementing them, starting with the command
side.

10.3.1. Handling commands

Commands are, if you like, the earliest source of data. Commands are sent to your application by
users (or by other systems) and are handled by the command side, which must do the following:

Validate the command
Turn the command into an event
Persist the event and publish it to interested parties

Let’s start by comparing commands and events, which are similar yet distinct:

Commands are requests from a user or other application. It’s possible for a command to be
disobeyed or disregarded for some reason. Maybe the command fails validation, or maybe
the system crashes while handling it. Commands are named in the imperative form, such
as MakeTransfer or FreezeAccount.
Events, in contrast, can’t fail because they’ve already happened. They’re named in the past
tense, such as DebitedTransfer or FrozeAccount. I am specifically considering events that
cause state transitions, and therefore must be persisted. If you have other, more transient
events in your system that need not be persisted, make sure you clearly distinguish
between them.

Other than that, commands and events generally capture the same information, and creating an
event from a command is just a matter of copying field by field (sometimes with some
variations). An event directly affects a single entity, but events are broadcast within your system,
so they may trigger the creation of other events that affect other entities.

Next, let’s look at the main workflow on the command side, illustrated in figure 10.6.

Figure 10.6. The command side of an event-sourced system

(253)

For simplicity, I’ll temporarily disregard validation as well as error handling. This will allow us
to concentrate on the essentials of the data flow.

The following listing shows the entry point and main workflow of the command side.

Listing 10.9. Top-level command-handling workflow

Let’s look at the dependencies first (assume they’re injected in the constructor). We have
getAccount, which will retrieve the current state of the affected account (computed from its event
history, as you’ve seen earlier). We then have saveAndPublish, which will persist the given event
to storage, and publish it to any interested parties.

Now for the MakeTransfer method. It receives a command to make a transfer and uses the
getAccount function to retrieve the state of the account to be debited. It then feeds the retrieved
account state and the command to the Debit function (invoked as an extension method). This will

(254)

convert the command into an event and compute the new state of the account.

Debit returns a tuple containing both the created event and the account’s new state. The code then
uses C# 7 syntax (see the “Tuples in C# 7” sidebar) to destructure this tuple into its two
elements: the created event, which is passed to saveAndPublish, and the account’s new state,
which is used to populate the response that’s sent back to the client.

Next, let’s look at the Debit function:

Debit converts the command into an event,[4] and feeds that event, along with the new state, to
the Apply function to obtain the account’s new state. Notice that this is the very same Apply
function that’s used when computing the account’s current state from its event history; this
ensures that state transitions are consistent, regardless of whether the event is just occurring now
or has occurred in the past and is being replayed.

4

Other authors on ES would allow for a command to be translated into several events at this
point, but I find this tends to add complexity without any real benefit. Instead, I find that a
command should be translated into a single event; when this event is then published,
downstream event handlers can create other events, affecting the same, but more frequently
other, entities.

Tuples in C# 7

There’s no conceptual difference between tuples in C# 7 and tuples as we’ve had them since C#
4, but there are important differences in terms of performance and usability.

The old tuples have unattractive syntax: to access their elements, you must use properties called
Item1,Item2, and so on. With C# 7 comes new lightweight syntax for creating and consuming
tuples, similar to the syntax found in many other languages:

(255)

Furthermore, you can assign meaningful names to the elements of a tuple, so that you can query
them as you would fields or properties, as in the following example:

(string First, string Last, int Age) GetAuthorInfo()

 => ("Enrico", "Buonanno", 40);

var info = GetAuthorInfo();

info.First // => "Enrico"

info.Age // => 40

Apart from the new syntax, the underlying implementation of tuples has also changed. The old
tuples are backed by the System.Tuple classes, which are immutable reference types. The new
tuples are backed by the System.ValueTuple structs. Being structs, they’re copied when passed
between functions, yet they’re mutable, so you can update their members within methods—a
compromise between the expected immutability of tuples and performance considerations.

Note that the techniques shown here in no way require that you use C# 7 or the new tuple
implementation. If you’re on an older version of C#, you can still use the old-System.Tuple and
pay a penalty in terms of readability.

10.3.2. Handling events

Where do we actually send the money to the recipient? That’s done as part of saveAnd-Publish:
the newly created event should be propagated to interested parties. A dedicated service should
subscribe to these events and send the money to the receiving bank (via SWIFT or another inter-
bank platform) as appropriate. Several other subscribers may consume the same event for other
reasons, such as recomputing the bank’s cash reserve, sending a toast notification to the client’s
phone, and so on.

This may throw some light on why the function is called saveAndPublish: both things should
happen atomically. If the process saves the event and then crashes before all subscribers were
able to handle the event, the system may be left in an inconsistent state. For example, the account
may be debited but the money not sent to SWIFT.

How this atomicity is achieved is somewhat intricate and strictly depends on the infrastructure
you’re targeting (both for storage and for event propagation). For instance, if you use Event
Store, you can take advantage of durable subscriptions to event streams, which guarantee that the
event is delivered at least once to the subscriber (that’s the meaning of “durable” in this context).

So, by using Event Store, you could simplify the logic in saveAndPublish to only save the event.
Event handlers then subscribe to Event Store’s event streams, as shown in figure 10.7.

(256)

Figure 10.7. Event handlers can subscribe to event streams published by Event Store.

10.3.3. Adding validation

Let’s now add validation so that the command is only accepted and turned into an event if the
current state of the account allows it.

Listing 10.10. Ensuring only valid transitions take place

public static class Account

{

 public static Validation<(Event, AccountState)> Debit

 (this AccountState account, MakeTransfer transfer)

 {

 if (account.Status != AccountStatus.Active)

 return Errors.AccountNotActive;

 if (account.Balance - transfer.Amount < account.AllowedOverdraft)

 return Errors.InsufficientBalance;

 Event evt = transfer.ToEvent();

 AccountState newState = account.Apply(evt);

 return (evt, newState);

 }

}

Here Debit performs some account-specific validation, so the return type is wrapped in a
Validation. Only if all goes well does it return the event-new state tuple. Otherwise it returns a
validation error. (Note that in either case, the returned value is implicitly lifted into a Validation

(257)

in the appropriate state.)

With this in place, let’s revisit the main workflow, adding validation.

Listing 10.11. Command handling, with validation

public class MakeTransferController : Controller

{

 Func<MakeTransfer, Validation<MakeTransfer>> validate;

 Func<Guid, AccountState> getAccount;

 Action<Event> saveAndPublish;

 public IActionResult MakeTransfer([FromBody] MakeTransfer cmd)

 => validate(cmd)

 .Bind(t => getAccount(t.DebitedAccountId).Debit(t))

 .Do(result => saveAndPublish(result.Item1))

 .Match<IActionResult>(

 Invalid: errs => BadRequest(new { Errors = errs }),

 Valid: result => Ok(new { Balance = result.Item2.Balance }));

}

This listing has a new dependency, validate, which should perform some more general validation
of the command, such as ensuring that the IBAN and BIC codes are in the right format, and the
like. This will have to be combined with the account-specific validation that happens in Debit,
and naturally this is done with Bind.

The next step of the workflow, which involves calling saveAndPublish, happens inside a Do
function. Do is similar to ForEach in that it takes a side-effecting function. But whereas ForEach
“throws away” the inner value, Do passes the value along, like this:

public static Validation<T> Do<T>

 (this Validation<T> val, Action<T> action)

{

 val.ForEach(action);

 return val;

}

This enables us to have the value available in the subsequent call to Match, the final step in the
workflow, where we send an appropriate response to the client, depending on the outcome of the
validation.

This revised version adds validation, but no exception handling: getAccount and saveAndPublish
perform IO, so they could both fail. To express this, we’d have to combine Validation with
another effect, such as Exceptional. You’ll see how this can be achieved in chapter 14.

You should now have a pretty good idea of how the command side of an event-sourced system
works. Let’s now look at the query side.

10.3.4. Creating views of the data from events

We’ll again start our exploration from the client. The client displays data in the format that’s best
suited for the user’s needs, and the server is meant to provide data that appears in these views—
the view models.

Let’s take a bank account statement as a typical view of a bank account. It will contain a list of
transactions that occurred within a given period (let’s assume that periods coincide with calendar
months), as well as the balance at the start and at the end of the period. Figure 10.8 shows an
example.

(258)

Figure 10.8. Example structure of a bank statement

Next, let’s define the structure of the view model: the objects containing the data used to
populate the bank statement. We’ll have a parent object, AccountStatement, with a list of
Transactions.

Listing 10.12. The view model for a bank statement

public class AccountStatement

{

 public int Month { get; }

 public int Year { get; }

 public decimal StartingBalance { get; }

 public decimal EndBalance { get; }

 public IEnumerable<Transaction> Transactions { get; }

}

public class Transaction

{

 public DateTime Date { get; }

 public decimal DebitedAmount { get; }

 public decimal CreditedAmount { get; }

 public string Description { get; }

}

Next we need to populate this data from the event history of a given account. Notice that we need
the full history of events. The following listing shows how we can calculate the starting and
ending balance for the statement period.

Listing 10.13. Calculating start and end balance

(259)

Just as we used Aggregate to compute the state on the command side, we can use it here to
compute the data we need for the query. We can calculate the starting balance by aggregating all
events up to the start of the statement period by using 0 as a seed value and a reducer function
that increments or decrements the balance, depending on what the event was and how it affected
the balance.

Not all events affect the balance; hence the call to Default, which will return bal, the running
balance, if the event is of a different type than the ones listed in the Pattern initializer. For the
end balance, the same logic can be used, including the events that occurred within the statement
period.

Now for the list of transactions. Some events involve a transaction; others don’t. Let’s begin by
adding some methods to construct a Transaction from an Event:

public class Transaction

{

 public Transaction(DebitedTransfer e)

 {

 this.DebitedAmount = e.DebitedAmount;

 Description = $"Transfer to {e.Bic}/{e.Iban}; Ref: {e.Reference}";

 Date = e.Timestamp.Date;

 }

 public Transaction(DepositedCash e)

 {

 this.CreditedAmount = e.Amount;

 Description = $"Deposit at {e.BranchId}";

 Date = e.Timestamp.Date;

 }

(260)

}

We now need to create the list of Transactions for the period. To do this, we need to “map” all
events that occurred in the period to the corresponding transactions. It’s not quite as simple as
using Map on the list of events, though, because we need to filter out events that don’t involve a
transaction. To do this, we can instead Bind an Option-returning function that only returns
Some<Transaction> for events that do involve a transaction (remember from section 4.5 that Bind
filters out the Nones from the result list).

Listing 10.14. Populating the list of transactions on the statement

As you can see, populating a view model from a list of events requires some work and a bit of
thinking. The data transformations involved can usually be performed through the usual Map,
Bind, and Aggregate functions. View models stay centered on the user experience, and are
completely decoupled from the underlying representation.

Populating a view model can be computationally intensive if it involves processing a large
number of events, so some optimization is often required to avoid recomputing a view model
every time it’s required. One such optimization is for the query side to cache the current version
for every view model, and update it as new events are received. In this case, the query side
subscribes to events published by the command side, and upon receiving these, updates the
cached version and optionally publishes the updated view model to connected clients.

As you can see, if you want an event-sourced model with the performance characteristics of a
relational database (or better), some extra work is required to precompute and maintain view
models. Some more sophisticated optimizations involve a dedicated DB for the query side, where
data is stored in an optimized format for querying. For example, if you need to query views with
arbitrary filters, this can be a relational DB. This “query model” is always a by-product of past
events, so that the event store acts as a “source of truth.”

(261)

10.4. Comparing different approaches to immutable storage

In this chapter you’ve had a fairly complete overview of ES, an event-based approach to data
storage. You’ve seen why it’s a functional technique at heart and how storing data about state
transitions, rather than state, provides some important benefits. The other approach I mentioned
in the opening of the chapter is the assertion-based approach. This is more like the relational
model in the sense that you still define entities and attributes, which are essentially like rows and
columns in a relational DB. (For example, you could define a “Person” entity with an “Email”
attribute.)

You modify this DB through assertions—things like “starting now, the ‘Email’ attribute of the
‘Person’ with id 123 has value ‘jobl@manning.com’.” In the future, this attribute may become
associated with a different value, but the fact that it was associated with the value
“jobl@manning.com” within a particular time range is never forgotten, overwritten, or
destroyed. In this model, the DB becomes an ever-growing collection of facts.

You can then query the DB in much the same manner that you would a relational DB, but you
get to specify whether you want to query the current state or the state at any point in time.

With both the assertion-based and event-based approaches, you get the following:

An audit trail, making it possible to query the state of an entity at any point in time
No database contention, because no data is ever overwritten

These benefits are inherent in the fact that both approaches embrace immutability. Let’s look at
some other factors that may influence your choice between these two approaches.

10.4.1. Datomic vs. Event Store

The assertion-based approach really only has one embodiment, Datomic
(http://www.datomic.com/), which, apart from the principles discussed here, implements other
interesting design decisions that give it good characteristics in terms of performance and
scalability. Datomic is a proprietary product with a free version that’s limited in terms of
scalability. It would be an arduous task to roll out your own implementation.

Implementing an event-sourced system, on the other hand, is relatively simple: most of what’s
required was covered in this chapter. You can write an effective implementation using any DB—
either NoSQL or relational—as underlying storage. For a large-scale application, it still pays to
use a DB specifically designed for ES such as Event Store, which is open source.[5] In short, if
you want an assertion-based approach, you pretty much have to use Datomic; with ES, you may
need or choose to use Event Store.

5

Although Event Store is particularly attractive for .NET users, it’s not the only database
designed around event streams. Another stack built on the same principles is Apache Kafka,
which manages event streams, and Samza, a framework for maintaining view models
computed from these streams.

Event Store was developed in .NET, it provides a .NET client for communicating with the store

(262)

http://www.datomic.com/

via TCP, and the project has good visibility in the .NET community. Datomic was developed in
Clojure, so interoperability with .NET isn’t as good.[6] These aspects have tilted the scales in
favor of Event Store, and partly as a result of that we’ve seen much wider adoption of ES—
whether using Event Store or not—among .NET users.

6

As of early 2017, it’s possible to connect to Datomic via a RESTful API. This API is
considered legacy (but will continue to be supported), and there’s no native client for .NET.

10.4.2. How event-driven is your domain?

The most important consideration when deciding on any technology is the specific requirements
of your domain: some applications are intrinsically event-driven, and others aren’t.

How can you assess whether ES is a good fit? First, look at what you consider “events” in your
domain; how important are they? Second, see if there’s a natural difference between the sort of
data being provided and the data being consumed by the parties involved.

Consider, for example, the domain of online auctions: a typical event would be when a client
places a bid on an item. This event triggers changes: the client becomes the high bidder, and the
value for the next bid is raised. Another important event is when the hammer comes down: the
high bidder is bound to purchase the item, which is no longer for sale, and so on. This domain is
definitely event-driven.

Furthermore, the data consumed by clients tends to be in a completely different shape from the
data they produce: most clients produce single bids, but they may consume data containing the
details of an item for sale, the history of bids placed so far on an item, or the list of items they
purchased. So there’s already a natural decoupling between user actions (commands) and the
data they consume (queries). ES is a very natural fit for this domain.

By contrast, imagine an application enabling an insurance provider to manage its products. What
events can you think of? A new policy can be created, or it can be retired, or some parameter can
be modified...but, wait, these are essentially the CRUD operations! You still require an audit log,
because modifying the characteristics of a product may affect thousands of contracts once the
modification comes into effect. This is a much better fit for an assertion-based DB.

Immutable data storage is an area to watch for future developments, as both approaches to
immutable storage provide important responses to the needs and challenges of modern
applications.

Summary

Thinking functionally about data also encompasses storage. Instead of mutating stored
data, consider the database as a big immutable collection: you can append new data, but
never overwrite existing data.
There are two main approaches to immutable storage:

Event-based—The DB is an ever-growing collection of events.
Assertion-based—The DB is an ever-growing collection of facts.

Event sourcing means persisting event data as events occur. The state of an entity need not

(263)

be stored, because it can always be computed as the “sum” of all events that affected the
entity.
An event-sourced system naturally separates the concerns of reading and writing data,
enabling a CQRS architecture that separates between

The command side, where commands are received, validated, and turned into events
that are persisted and published.
The query side, where events are combined to create view models, which are served
to clients and, optionally, cached for better performance.

Event-sourced systems have several main components:

Commands—Simple, immutable data objects encapsulating a request from a client
program.
Events—Simple, immutable data objects capturing what happened.
States—Data objects representing the state of an entity at a certain point in time.
State transitions—Functions that take a state and an event, and produce a new state.
View models—Data objects for populating views. They’re computed from events.
Event handlers—These subscribe to events to perform business logic (on the
command side) or to update view models (on the query side).

(264)

Part 3. Advanced techniques
This part tackles the complex topics of state management, asynchrony, and concurrency.

Chapter 11 discusses the benefits of lazy evaluation and how lazy computations can be
composed. This is a general pattern for which you’ll see several practical uses.

Chapter 12 shows how you can implement stateful programs without state mutation, and how
stateful computations can also be composed.

Chapter 13 deals with asynchronous computations, and with how asynchrony can be combined
with other effects discussed in previous parts of the book. This leads to the wider concern of
combining several monadic effects—still an open topic of research in FP.

Asynchronous streams are even more general than asynchronous values, and they’re discussed in
chapter 14, along with Rx, a framework for working with streams.

Finally, chapter 15 introduces message-passing concurrency, a style of lock-free concurrency
that can be used when writing stateful concurrent programs.

Each chapter in part 3 introduces important techniques that have the potential to completely alter
the way you think about writing software. Many of these topics are too vast to be discussed
comprehensively, so these chapters aim to provide an introduction and a starting point for further
exploration.

(265)

Chapter 11. Lazy computations, continuations, and
the beauty of monadic composition
This chapter covers

Lazy computations
Exception handling with Try
Monadically composing functions
Escaping the pyramid of doom with continuations

In this chapter, you’ll first learn why it’s sometimes desirable to define lazy computations; that
is, functions that may or may not be executed. You’ll then see how these functions can be
composed with other functions, independently of their execution.

Once you’ve got your feet wet with lazy computations, which are just plain functions, you’ll see
how the same techniques can be extended to computations that have some useful effects other
than laziness. Namely, you’ll learn how to use the Try delegate to safely run code that may throw
an exception, and how to compose several Trys. You’ll then learn how to compose functions that
take a callback without ending up in “callback hell.”

What holds all these techniques together is that, in all cases, you’re treating functions as things
that have certain specific characteristics, and you can compose them independently of their
execution. This requires quite a leap in abstraction, but the result is quite powerful.

The contents of this chapter are challenging, so don’t be discouraged if you don’t get it all on
your first reading.

(266)

11.1. The virtue of laziness

Laziness in computing means deferring a computation until its result is needed. This is beneficial
when the computation is expensive and its result may not be needed.

To introduce the idea of laziness, consider the following example of a method that randomly
picks one of two given elements. You can try it out in the REPL:

var rand = new Random();

T Pick<T>(T l, T r) =>

 rand.NextDouble() < 0.5 ? l : r;

Pick(1 + 2, 3 + 4) // => 3, or 7

The interesting thing to point out here is that when you invoke Pick, both the expressions 1 + 2
and 3 + 4 are evaluated, even though only one of them is needed in the end.[1] So, the program is
performing some unnecessary computation; this is suboptimal and should be avoided if the
computation is expensive enough.

1

This is because C# is a language with strict or eager evaluation—expressions are evaluated
as soon as they’re bound to a variable. Although strict evaluation is more common, there are
languages—notably Haskell—that use lazy evaluation, so that expressions are evaluated
only as needed.

To prevent this, we could rewrite Pick to take not two values, but two lazy computations instead;
that is, functions that can produce the required values:

T Pick<T>(Func<T> l, Func<T> r) =>

 (rand.NextDouble() < 0.5 ? l : r)();

Pick(() => 1 + 2, () => 3 + 4) // => 3, or 7

Pick now first chooses between the two functions and then evaluates one of them. As a result,
only one computation is performed.

In summary, if you’re not sure whether a value will be required, and it may be expensive to
compute it, pass the value lazily by wrapping it in a function that will compute the value.

Next, you’ll see how such a lazy API can be beneficial when working with Option.

11.1.1. Lazy APIs for working with Option

The Option API provides a couple of examples that nicely illustrate how laziness can be useful:
namely, when you want to use a value only when the Option is in the None state.

Providing a fallback Option

Or Else is a convenience function that allows you to combine two Options. It yields the left Option
if it’s Some; otherwise it falls back to the right Option:

(267)

public static Option<T> OrElse<T>

 (this Option<T> left, Option<T> right)

 => left.Match(

 () => right,

 (_) => left);

For example, say you define a repository that looks items up from a cache, failing which it goes
to the DB:

interface IRepository<T> { Option<T> Lookup(Guid id); }

class CachingRepository<T> : IRepository<T>

{

 IDictionary<Guid, T> cache;

 IRepository<T> db;

 public Option<T> Lookup(Guid id)

 => cache.Lookup(id).OrElse(db.Lookup(id));

}

Can you see the problem in the preceding code? Because OrElse is always called, its argument is
always evaluated, meaning that you’re going to the DB even if the item is found in the cache,
defeating the purpose of the cache altogether!

This can be solved by using laziness. For such scenarios, I’ve defined an overload of OrElse
taking not a fallback Option but a function that will be evaluated if necessary to produce the
fallback Option:

public static Option<T> OrElse<T>

 (this Option<T> opt, Func<Option<T>> fallback)

 => opt.Match(

 () => fallback(),

 (_) => opt);

In this implementation, the fallback function will only be evaluated if opt is None (compare this to
the previously shown overload, where the fallback option, right, is always evaluated). You can
accordingly fix the implementation of the caching repository as follows:

public Option<T> Lookup(Guid id)

 => cache.Lookup(id).OrElse(() => db.Lookup(id));

Now, if the cache lookup returns Some, OrElse will still be called, but db.Lookup won’t, achieving
the desired behavior.

As you can see, all that’s required to make the evaluation of an expression lazy is, instead of
providing an expression, providing a function that will evaluate to that expression. Instead of a T,
provide a Func<T>.

Providing a default value

GetOrElse is a similar function that allows you to get the inner value of an Option, specifying a
default value to use if it’s None. For instance, you may need to look up a value from
configuration, and use a default value instead if no value is specified:

string DefaultApiRoot => "localhost:8000";

string GetApiRoot(IConfigurationRoot config)

 => config.Lookup("ApiRoot").GetOrElse(DefaultApiRoot);

Assume that Lookup returns a duly populated Option whose state depends on whether the value

(268)

was specified in configuration. Notice that the DefaultApiRoot property is evaluated regardless of
the state of the Option.

In this case that’s OK, because it simply returns a constant value. But if Default-ApiRoot involved
an expensive computation, you’d prefer to only perform it if needed by passing the default value
lazily. This is why I’ve also provided two overloads of GetOrElse:

public static T GetOrElse<T>(this Option<T> opt, T defaultValue)

 => opt.Match(

 () => defaultValue,

 (t) => t);

public static T GetOrElse<T>(this Option<T> opt, Func<T> fallback)

 => opt.Match(

 () => fallback(),

 (t) => t);

The first overload takes a regular fallback value, T, which will be evaluated whenever GetOrElse
is called. The second overload takes a Func<T>: a function that will be evaluated only when
necessary.

When should an API take values lazily?

In general, whenever a function may not use some of its arguments, those arguments should be
specified as lazy computations.

You may choose to provide two overloads, taking a value for the argument, or a lazy
computation. Then the client code can decide on the most appropriate overload to call:

If computing the value is expensive enough, pass the value lazily (more efficient).
If the cost of computing the value is negligible, pass the value (more readable).

11.1.2. Composing lazy computations

In the rest of this chapter, you’ll see how lazy computations can be composed, and why doing so
is a powerful technique. We’ll start with the plain-vanilla lazy computation Func<T>, and then
move on to lazy computations that include some useful effects such as handling errors or state.

You’ve seen that Func<T> is a lazy computation that can be invoked to obtain a T. It turns out that
Func<T> is a functor over T. Remember, a functor is something that has an inner value, over which
you can Map a function. How is that possible? The functors you’ve seen so far are all “containers”
of some sort. How can a function possibly be a container, and what’s its inner value?

Well, you can think of a function as containing its “potential” result. If, say, Option<T> “maybe-
contains” some value of type T, you can say that Func<T> “potentially contains” some value of
type T or, perhaps more accurately, contains the potential to produce a value of type T. So a
function’s inner value is the value it will yield when it’s evaluated.

You may know the tale of Aladdin’s magic lamp. When rubbed, it would produce a powerful
genie. Clearly, such a lamp could have the power to contain anything: put a genie into it, and you
can rub it to get the genie back out; put your grandma in it, and you can rub it to get grandma

(269)

back. And you can think of it as a functor: map a “turn blue” function onto the lamp, and
whenever you rub the lamp, you’ll get the contents of the lamp, turned blue. Func<T> is such a
container, where rubbing is function invocation.

In reality, you know that a functor must expose a Map method with a suitable signature, so if you
follow the pattern to define Map, you’ll have this:

An input functor of type () → T; that is, a function that can be called to generate a T. Let’s
call it f.
A function to be mapped, of type T → R. Let’s call it g.
An expected result of type () → R; that is, a function that can be called to generate an R.

The implementation is quite simple: invoke f to obtain a T, and then pass it to g to obtain an R, as
illustrated in figure 11.1. Listing 11.1 shows the corresponding code.

Figure 11.1. Definition of Map for Func<T>

Listing 11.1. Definition of Map for Func<T>

public static Func<R> Map<T, R>

 (this Func<T> f, Func<T, R> g)

 => () => g(f());

Notice that Map doesn’t invoke f: it takes a lazily evaluated T and returns a lazily evaluated R.
Also notice that the implementation is just function composition.

To see this in action, open the REPL, import LaYumba.Functional as usual, and type the following:

Func<string> lazyGrandma = () => "grandma";

Func<string, string> turnBlue = s => $"blue {s}";

Func<string> lazyGrandmaBlue = lazyGrandma.Map(turnBlue);

lazyGrandmaBlue() // => "blue grandma"

To better understand the laziness of the whole computation, you can bake some debug statements
in:

(270)

As you can see, the functions lazyGrandma and turnBlue aren’t invoked until the last line. This
shows that you can build up arbitrarily complex logic without executing anything until you
decide to fire things off.

Once you’ve thoroughly understood the preceding examples, experimented in the REPL, and
understood the definition of Map, it will be easy to understand the definition of Bind.

Listing 11.2. Definition of Bind for Func<T>

public static Func<R> Bind<T, R>

 (this Func<T> f, Func<T, Func<R>> g)

 => () => g(f())();

Bind returns a function that, when evaluated, will evaluate f to get a T. Apply g to it to get a
Func<R>, and evaluate it to get the resulting R.

This is all very interesting, but how useful is it exactly? Well, because functions are already built
into the language, being able to treat Func as a monad might not give you a lot. On the other hand,
now that you know you can compose functions monadically, you can bake some effects into how
those functions behave. You’ll see an example of this next.

(271)

11.2. Exception handling with Try

In chapter 6, I showed how you could go from an Exception-based API to a functional one by
catching exceptions and returning them in an Exceptional—a structure that can hold either an
exception or a successful result.

For instance, if you want to safely create a Uri from a string, you could write a method as
follows:

Exceptional<Uri> CreateUri(string uri)

{

 try { return new Uri(uri); }

 catch (Exception ex) { return ex; }

}

This works, but should you do this for every method that can throw an exception? Surely, at the
third method, you’ll start to feel that all this trying and catching is boilerplate. Could we abstract
it away?

11.2.1. Representing computations that may fail

Indeed we can, with Try—a delegate representing the operation that may throw an exception. It’s
defined as follows:

public delegate Exceptional<T> Try<T>();

Try<T> is simply a delegate you can use to represent a computation that normally returns a T but
may throw an exception instead. Notice that its type is () → T, the same as (or compatible with)
Func<T>. It’s just a lazy computation, but we’re adding some semantic meaning by calling it Try;
this conveys that the evaluation may throw an exception.

Defining Try as a separate type allows you to define extension methods specific to Try, most
importantly Run, which safely invokes it, and returns a suitably populated Exceptional:

public static Exceptional<T> Run<T>(this Try<T> @try)

{

 try { return @try(); }

 catch (Exception ex) { return ex; }

}

Run does the try/catch ceremony once and for all, so you don’t ever have to write a try/catch
statement again. Test it for yourself by typing the following into the REPL:

Try<Uri> CreateUri(string uri) => () => new Uri(uri);

CreateUri("http://github.com").Run()

// => Success(http://github.com/)

CreateUri("rubbish").Run()

// => Exception(Invalid URI: The format of the URI could not be determined.)

Notice how this allows you to define CreateUri without any boilerplate, but when you invoke it
with Run, the result is correctly wrapped in an Exceptional. You now have functional error-
handling without side effects and without boilerplate.

As a shorthand notation, if you didn’t want to define CreateUri as a dedicated function, you could

(272)

use the Try function (defined on F), which simply transforms a Func<T> into a Try<T>:

Try(() => new Uri("http://google.com")).Run()

// => Success(http://google.com/)

11.2.2. Safely extracting information from a JSON object

Now comes the interesting part—the reason why it’s important that you can compose lazy
computations. If you have two (or more) computations that may fail, you can monadically
compose them into a single computation that may fail.

For example, imagine you have a string representing an object in JSON format with the
following structure:

{

 'Site': 'github',

 'Uri': 'http://github.com'

}

You want to define a method that creates a Uri from the value in the “Uri” field of the JSON
object. An unsafe way to do this would be as follows.

Listing 11.3. Unsafely extracting data from a JSON object

Both the Uri constructor and JObject.Parse will throw an exception if their input isn’t well-
formed. (The indexer on JObject returns null if the requested field isn’t present, and this will in
turn cause the Uri constructor to throw an exception.)

Let’s use Try to make the implementation safe. We can start by modeling the operations that can
fail with Try, as follows:

Try<JObject> Parse(string s) => () => JObject.Parse(s);

Try<Uri> CreateUri(string uri) => () => new Uri(uri);

The way you compose several operations that return a Try is (as with any other “container”) by
using Bind. We’ll look at its definition in a moment. For now, trust that it works, and let’s use it
to define a method that combines the two preceding operations into another Try-returning
function:

Try<Uri> ExtractUri(string json)

 => Parse(json)

 .Bind(jObj => CreateUri((string)jObj["Uri"]));

This works, but it’s not particularly readable. The LaYumba.Functional library includes the
implementation of the LINQ query pattern (see the sidebar on the LINQ query pattern) for Try
and all other included monads, so we can improve readability by using a LINQ expression
instead.

(273)

Listing 11.4. Safely extracting data from a JSON object

Let’s feed a few sample values to ExtractUri to see that it works as intended:

ExtractUri("{'Uri': 'http://github.com'}").Run()

// => Success(http://github.com/)

ExtractUri("blah!").Run()

// => Exception(Unexpected character encountered while parsing value: b...)

ExtractUri("{}").Run()

// => Exception(Value cannot be null.\r\nParameter name: uriString)

ExtractUri("{'Uri': 'rubbish'}").Run()

// => Exception(Invalid URI: The format of the URI could not be determined.)

Remember, everything happens lazily. When you evaluate the expression Extract-Uri("{}"), you
just get a Try that will eventually perform some computation. Nothing happens until you call Run.

11.2.3. Composing computations that may fail

Now that you’ve seen how to use Bind to compose several computations that may fail, let’s look
under the hood and see how Bind is defined for Try.

Remember that a Try<T> is just like a Func<T>, for which we know that invocation may throw an
exception. So let’s start by quickly looking at Bind for Func again:

public static Func<R> Bind<T, R>

 (this Func<T> f, Func<T, Func<R>> g)

 => () => g(f())();

A cavalier way of describing this code is that it first invokes f and then g. Now we need to adapt
this to work with Try. First, replacing Func with Try will give us the correct signature. (This is
often half of the work because, for the core functions, if the implementation type checks, it
usually works.) Second, because invoking a Try directly may throw an exception, we need to use
Run instead. Finally, we don’t want to run the second function if the first function fails.

Listing 11.5. Definition of Bind for Try<T>

Bind takes a Try and a Try-returning function f, and returns a function that, when invoked, will
run the Try and, if it succeeds, run f on the result to obtain another Try, which is also run.

(274)

If we can define Bind, we can always define Map, which is usually simpler. I suggest you define
Map as an exercise.

A reminder on the LINQ query pattern

A fundamental idea of this chapter is that you can use Bind to sequence computations, and for
this reason I’ll be showing the implementations of Bind.

In order to use LINQ expressions with monadic types—in this case, Try—you additionally need
to implement the LINQ query pattern, which I discussed in section 8.4.2. Here’s a reminder of
how to do this:

Alias Map as Select.
Alias Bind as SelectMany.
Define an additional overload of SelectMany that takes a binary projection function. This
additional overload can be defined in terms of Map and Bind, although a more efficient
implementation can usually be defined.

I won’t clutter up this chapter by showing all these method implementations, which are available
in the code samples. By now you have all the tools to understand them.

11.2.4. Monadic composition: what does it mean?

In this chapter and the next, you’ll often read about “monadically composing” computations.
That sounds complicated, but it really isn’t, so let’s take the mystery out of it.

First, let’s recap “normal” function composition, which I covered in chapter 5. Suppose you have
two functions:

f : A → B

g : B → C

You can compose them by simply piping the output of f into g, obtaining a function A → C.

Now imagine you have the following functions:

f' : A → Try

g' : B → Try<C>

These functions obviously don’t compose, because f' returns a Try, whereas g' expects a B,
but it’s fairly clear that you may want to combine them by “extracting” the B from the Try and
feeding it to g'. This is monadic composition, and it’s exactly what Bind for Try does, as you’ve
seen.

In other words, monadic composition is a way to combine functions that’s more general than
function composition and involves some logic dictating how the functions are composed. This
logic is captured in the Bind function.

There are several variations on this pattern. Imagine the following functions:

f" : A → (B, K)

g" : B → (C, K)

(275)

Could we compose these into a new function of type A → (C, K)? Given an A, it’s easy to
compute a C: run f" on the A, extract the B from the resulting tuple, and feed it to g". In the
process, we’ve computed two K’s, so what should we do with them? If there’s a way to combine
two K’s into a single K, then we could return the combined K. For example, if K is a list, we could
return all elements from both lists. Functions in the preceding form can be monadically
composed if K is of a suitable type.[2]

2

This is referred to as the writer monad in the literature, and types for which two instances
can always be combined into one are called monoids.

The functions for which I’ll demonstrate monadic composition in this book are listed in table
11.1, but there are many more possible variations.

Table 11.1. Monadically composable computations demonstrated in this book

Delegate Signature Section Scenario

Try<T> () → T 11.2 Exception handling

Middleware<T> (T → R) → R 11.3
Adding behavior
before or after a given
function

Generator<T> int → (T, int) 12.2 Generating random
data

StatefulComputation<S,
T> S → (T, S) 12.3 Keeping state between

computations

(276)

11.3. Creating a middleware pipeline for DB access

In this section, I’ll start by showing how using HOFs in some cases leads to deeply nested
callbacks, a problem commonly referred to as “callback hell,” or “the pyramid of doom.” I’ll use
DB access as the specific scenario to illustrate this problem and show how you can leverage the
LINQ query pattern to create flat, monadic workflows instead.

This section contains advanced material that isn’t required to understand the following chapters,
in case you want to skip ahead.

11.3.1. Composing functions that perform setup/teardown

In chapter 1, you saw that you can use a function that performs some setup and teardown and is
parameterized with another function to be invoked in between. An example of this was a
function that manages a DB connection, and that’s parameterized with a function that uses the
connection to interact with the DB:

public static R Connect<R>

 (ConnectionString connString, Func<SqlConnection, R> f)

{

 using (var conn = new SqlConnection(connString))

 {

 conn.Open();

 return f(conn);

 }

}

This function can be consumed in client code like so:

public void Log(LogMessage message)

 => Connect(connString, c => c.Execute("sp_create_log"

 , message, commandType: CommandType.StoredProcedure));

Let’s define a similar function that can be used to log a message before and after an operation:

public static T Trace<T>(ILogger log, string op, Func<T> f)

{

 log.LogTrace($"Entering {op}");

 T t = f();

 log.LogTrace($"Leaving {op}");

 return t;

}

If you wanted to leverage both functions—opening/closing a connection, and tracing
entering/leaving a block—you’d write something like the following.

Listing 11.6. Nested callbacks are hard to read

public void Log(LogMessage message)

 => Instrumentation.Trace("CreateLog"

 , () => ConnectionHelper.Connect(connString

 , c => c.Execute("sp_create_log"

 , message, commandType: CommandType.StoredProcedure)));

This is starting to become hard to read. What if you wanted some other setup of work to be done
as well? For every HOF you add, your callbacks are nested one level deeper, making the code
harder to understand. This is what’s commonly referred to as “the pyramid of doom.”

(277)

Instead, what we’d ideally like to have is a clean way to compose a middleware pipeline, as
illustrated in figure 11.2. That is, we want to add some behavior (like connection management,
diagnostics, and so on) to each trip to the DB. Conceptually, this is similar to the middleware
pipeline for handling requests in ASP.NET Core.

Figure 11.2. A middleware pipeline for accessing the DB

In a normal, linear function pipeline, the output of each function is piped into the next function,
so that a function has no control of what happens downstream. A middleware pipeline, on the
other hand, is U-shaped: each function passes some data along, but it also receives some data on
the way out, so to speak. As a result, each function is able to perform some operations before and
after the functions downstream.

I’m going to call each of these functions or blocks a middleware. We want to be able to nicely
compose such middleware pipelines: add logging, add timing, and so on. But because each
middleware must take a callback function as an input argument (otherwise, it can’t intervene
after the callback has returned), how can we escape the pyramid of doom?

11.3.2. A recipe against the pyramid of doom

It turns out that one way we can look at Bind is as a recipe against the pyramid of doom. For
instance, you may remember how in chapter 6 we used Bind to combine several Either-returning
functions:

WakeUpEarly()

 .Bind(ShopForIngredients)

 .Bind(CookRecipe)

 .Match(

 Left: PlanB,

 Right: EnjoyTogether);

If you expand the calls to Bind, the preceding code looks like this:

WakeUpEarly().Match(

 Left: planB,

 Right: u => ShopForIngredients(u).Match(

(278)

 Left: planB,

 Right: ingr = CookRecipe(ingr).Match(

 Left: planB,

 Right: EnjoyTogether)));

You can see that Bind effectively enables us to escape the pyramid of doom in this case—the
same would apply to Option, and so on. But can we define Bind for our middleware functions?

11.3.3. Capturing the essence of a middleware function

To answer this question, let’s look at the signatures of our middleware functions and see if
there’s a pattern that we can identify and capture in an abstract way. These are the functions
we’ve seen so far:

Connect : ConnectionString → (SqlConnection → R) → R

Trace : ILogger → string → (() → R) → R

Let’s imagine a couple more examples where we might like to use middleware. We could use a
timing middleware that logs how long an operation has taken, and another middleware that
begins and commits a DB transaction. The signatures would look like this:

Time : ILogger → string → (() → R) → R

Transact : SqlConnection → (SqlTransaction → R) → R

Time has the same signature as Trace: it takes a logger and a string (the name of the operation
that’s being timed) and the function being timed. Transact is similar to Connect, but it takes a
connection that will be used to create a transaction and a function that consumes the transaction.

Now that we have four reasonable use cases, let’s see if there’s a pattern in the signatures:

ConnectionString → (SqlConnection → R) → R

ILogger → string → (() → R) → R

SqlConnection → (SqlTransaction → R) → R

Each function has some parameters that are specific to the functionality it exposes, but there’s
definitely a pattern. If we abstract away these specific parameters (which we could provide with
partial application) and only concentrate on the arguments shown in bold font, all the functions
have a signature in this form:

(T → R) → R

That is, they all take a callback function—although in this context it’s usually called a
continuation—that produces an R, and they return an R—presumably the very R returned by the
continuation, or a modified version of it. So the essence of a middleware function is that it takes
a continuation of type T → R, supplies a T to it to obtain an R, and returns an R, as shown in figure
11.3.

Figure 11.3. A single middleware function

(279)

Let’s capture this essence with a delegate:

// (T → dynamic) → dynamic

public delegate dynamic Middleware<T>(Func<T, dynamic> cont);

But wait. Why is it returning dynamic, rather than R?

The problem is that T (the input to the continuation) and R (its output) are not known at the same
time. For example, suppose you want to create a Middleware instance from a function such as
Connect, which has signature

public static R Connect<R>(ConnectionString connString

 , Func<SqlConnection, R> func) // ...

The continuation accepted by Connect takes a SqlConnection as input, so we can use Connect to
define a Middleware<SqlConnection>. That means the T type variable in Middleware<T> resolves to
SqlConnection, but we don’t yet know what the given continuation will yield, so we can’t yet
resolve the R type variable in Connect<R>.

Unfortunately, C# doesn’t allow us to “partially apply” type variables; hence, dynamic. So
although conceptually we’re thinking of combining HOFs of this type

(T → R) → R

we’re modeling them as follows:

(T → dynamic) → dynamic

Later you’ll see that you can still work with Middleware without compromising on type safety.

The interesting—and mind-bending—thing is that Middleware<T> is a monad over T, where,
remember, T is the type of the input argument taken by the continuation that is given to the
middleware function. This seems counterintuitive. A monad over T is usually something that
“contains” a T, or some Ts. But this still applies here: if a function has the signature (T → R) → R,
then it can provide a T to the given function T → R, so it must “contain” or somehow be able to
produce a T.

(280)

11.3.4. Implementing the query pattern for middleware

It’s time to learn how to combine two middleware blocks with Bind. Essentially, Bind attaches a
downstream middleware block to a pipeline, as shown in figure 11.4.

Figure 11.4. Bind adds a middleware block to the pipeline.

The implementation of Bind is simple to write, but not easy to fully grasp:

public static Middleware<R> Bind<T, R>

 (this Middleware<T> mw, Func<T, Middleware<R>> f)

 => cont

 => mw(t => f(t)(cont));

We have a Middleware<T> expecting a continuation of type (T → dynamic). We then have a
function, f, that takes a T and produces a Middleware<R>, expecting a continuation of type (R →
dynamic). What we get as a result is a Middleware<R> that, when supplied a continuation, cont, will
run the initial middleware, giving it as continuation a function that will run the binder function f
to obtain the second middleware, to which it will pass cont. Don’t worry if this doesn’t fully
make sense at this point.

Let’s look at Map now:

public static Middleware<R> Map<T, R>

 (this Middleware<T> mw, Func<T, R> f)

 => cont

 => mw(t => cont(f(t)));

Map takes a Middleware<T> and a function f from T to R. The middleware knows how to create a T
and supply it to a continuation that takes a T. By applying f, it now knows how to create an R and
supply it to a continuation that takes an R. You can visualize Map as adding a transformation T → R
before the continuation, or alternatively, as adding a new setup/teardown block to the pipeline,
performing a transformation as the setup and just passing the result along as the teardown, as
shown in figure 11.5.

(281)

Figure 11.5. Map adds a transformation to the pipeline.

Finally, once we’ve composed the desired pipeline, we can run the whole pipeline by passing a
continuation:

Middleware<A> mw;

Func<A, B> cont;

dynamic exp1 = mw(cont);

The preceding code shows that if you have a Middleware<A> and a continuation function cont of
type A → B, you can directly supply the continuation to the middleware.

There’s still a small crease to iron out. Notice that when we provide the continuation, we get a
dynamic back, where we really expect a B. To maintain type safety, we can define a Run function
that runs the pipeline with the identity function as continuation:

public static T Run<T>(this Middleware<T> mw)

 => (T)mw(t => t);

Because mw is a Middleware<T> (that is, mw can create a T and provide it to its continuation) and
because the continuation in this case is the identity function, we know that the continuation
produces a T, so we can confidently cast the result of running the middleware to T.

When we want to run a pipeline, instead of directly providing the continuation, we can use Map to
map the continuation, and then call Run:

Middleware<A> mw;

Func<A, B> cont;

B exp2 = mw.Map(cont).Run()

Here we map our continuation, A → B, onto our Middleware<A>, obtaining a Middleware, and then
run it (with the identity function) to obtain a B. Notice that exp2 from this snippet is identical to
exp1 from the previous one,[3] but we’ve regained type safety.

3

(282)

This is because when computing exp2, we first compute mw.Map(cont), which composes cont
with the continuation that will eventually be given, and then by calling Run we provide the
identity function as continuation. The resulting continuation is the composition of cont and
identity, which is exactly the same as providing cont as the continuation.

Let’s put this all to work by refactoring DbLogger to use Middleware, rather than HOFs:

public class DbLogger

{

 Middleware<SqlConnection> Connect;

 public DbLogger(ConnectionString connString)

 {

 Connect = f => ConnectionHelper.Connect(connString, f);

 }

 public void Log(LogMessage message) => (

 from conn in Connect

 select conn.Execute("sp_create_log", message

 , commandType: CommandType.StoredProcedure)

).Run();

In the constructor, we essentially use partial application to bake the connection string into the
Connect function, which now has the right signature to be used as a Middleware<SqlConnection>.

In the Log method, we create a pipeline that has a single middleware block, which creates the DB
connection. We can then use LINQ syntax to refer to conn, the connection that will be available
when the pipeline will be run, when calling Execute, the main operation that will interact with the
DB.

Of course, we could have written Log more concisely by just passing a callback to Connect. But
the whole point here is to avoid callbacks. As we add more blocks to the pipeline, we’ll be able
to do this by just adding from clauses to our LINQ comprehension. You’ll see this next.

11.3.5. Adding middleware that times the operation

Suppose we have a DB operation that sometimes takes longer than expected, so we’d like to add
another middleware that logs how long the DB access operation took. For this, we could define
the following HOF:

public static class Instrumentation

{

 public static T Time<T>(ILogger log, string op, Func<T> f)

 {

 var sw = new Stopwatch();

 sw.Start();

 T t = f();

 sw.Stop();

 log.LogDebug($"{op} took {sw.ElapsedMilliseconds}ms");

 return t;

 }

}

Time takes three arguments: a logger, to which it will log the diagnostic message; op, the name of
the operation being performed, which will be included in the logged message; and a function
representing the operation whose duration is being timed.

There’s a slight problem, because Time takes a Func<T> (a function with no input arguments),
whereas we defined the continuations accepted by our middleware to be in the form T → dynamic;

(283)

that is, there should always be an input parameter. We can bridge the gap with Unit, as usual, but
this time on the input side. For this, I’ve defined an adapter function that converts a function
taking Unit to a function taking no arguments:

public static Func<T> ToNullary<T>(this Func<Unit, T> f)

 => () => f(Unit());

With this in place, we can enrich our pipeline with a block for logging the time taken for DB
access.

Listing 11.7. A two-block middleware pipeline combining timing and connection management

public class DbLogger

{

 Middleware<SqlConnection> Connect;

 Func<string, Middleware<Unit>> Time;

 public DbLogger(ConnectionString connString, ILogger log)

 {

 Connect = f => ConnectionHelper.Connect(connString, f);

 Time = op => f => Instrumentation.Time(log, op, f.ToNullary());

 }

 public void DeleteOldLogs() => (

 from _ in Time("DeleteOldLogs")

 from conn in Connect

 select conn.Execute

 ("DELETE [Logs] WHERE [Timestamp] < @upTo"

 , new { upTo = 7.Days().Ago() })

).Run();

}

Once we’ve wrapped the call to Instrumentation.Time in a Middleware, we can use it in the pipeline
by adding an additional from clause. Notice that the _ variable will be assigned the Unit value
returned by Time. You can disregard it, but LINQ syntax doesn’t allow you to omit it.

11.3.6. Adding middleware that manages a DB transaction

As a final example, let’s add one more type of middleware that manages a DB transaction. We
can abstract simple transaction management into a HOF like this:

public static R Transact<R>

 (SqlConnection conn, Func<SqlTransaction, R> f)

{

 R r = default(R);

 using (var tran = conn.BeginTransaction())

 {

 r = f(tran);

 tran.Commit();

 }

 return r;

}

Transact takes a connection and a function, f, that consumes the transaction. Presumably, f
involves multiple actions against the DB, which we want to be performed atomically. As an
effect of using, the transaction will be rolled back if an exception is thrown by f.

Here’s an example of integrating Transact into a pipeline.

Listing 11.8. A pipeline that provides connection and transaction management

(284)

Look at our pipeline now: we have a block that creates the connection, and another block that
uses it to create a transaction. Within the select clause, we have two DB actions that use the
connection and the transaction, and which as a result will be executed atomically. Because
Execute returns an int (the number of affected rows), we can just use + to combine the two
operations.

As you’ve already seen in previous chapters, the Guid of the order being deleted is used to
populate the Id field of a param object, and as a result it will replace the @Id token of the SQL
template strings.

Once the middleware functions are set up, adding or removing a step from the pipeline is a one-
line change. If you’re logging timing information, do you only want to time the DB actions, or
also the time taken to acquire the connection? Whatever the case, you can change that by simply
changing the order of middleware in the pipeline:

The flat layout of LINQ queries makes it easy to see and change the order of the middleware
functions. And, of course, this solution avoids the pyramid of doom. Although I’ve used the idea
of middleware and the somewhat specific scenario of DB access to illustrate it, the concept of
continuations is wider and applies to any function in this form:[4]

4

In the literature, this is known as the continuation monad, which again is a misnomer,
because the monad here isn’t the continuation, but the computation that takes a continuation
as input.

(285)

(T → R) → R

This also means that we could have avoided defining a custom delegate Middleware. The
definitions of Map, Bind, and Run have nothing specific to this scenario, and we could have used
Func<Func<T, dynamic> dynamic> instead of Middleware<T>. This might even save a few lines of
code, because it removes the need for creating delegates of the correct type. I opted for
Middleware as a more explicit, domain-specific abstraction, but that’s a personal preference.

Middleware, as well as the other delegate-based monads Try and StatefulComputation you saw
earlier in the chapter, illustrates how computations that can be composed monadically provide
powerful and expressive constructs, allowing us to elegantly address general problems like
exception handling or state passing, and more specific scenarios like middleware pipelines and
others that we’ll address in chapter 12.

(286)

Summary

Laziness means deferring a computation until its result is needed. It’s especially useful
when the result may not be required in the end.
Lazy computations can be composed to create more complex computations that can then
be triggered as needed.
When dealing with an exception-based API, you can use the Try delegate type. The Run
function safely executes the code in the Try and returns the result wrapped in an
Exceptional.
HOFs in the form (T → R) → R (that is, functions that take a callback or continuation) can
also be composed monadically, enabling you to use flat LINQ expressions rather than
deeply nested callbacks.

(287)

Chapter 12. Stateful programs and stateful
computations
This chapter covers

What makes a program stateful?
Writing stateful programs without mutating state
Generating random structures
Composing stateful computations

Since chapter 1, I’ve been preaching against state mutation as a side effect that should be avoided
at almost any cost, and you’ve seen several examples of refactoring programs to avoid state
mutation. In this chapter you’ll see how the functional approach works when there’s a
requirement for the program to be stateful.

But what’s a stateful program exactly? It’s a program whose behavior differs, depending on past
inputs or events.[1] By analogy, if somebody says “Good morning,” you’ll probably mindlessly
greet them in return. If that person immediately says “Good morning” again, your reaction will
certainly differ: why in the world would somebody say “Good morning” twice in a row? A
stateless program, on the other hand, would keep answering “Good morning” just as mindlessly
as before, because it has no notion of past inputs. Every time is like the first time.

1

This means that a program may be considered stateful/stateless depending on where you
draw the program boundary. You may have a stateless server that uses a DB to keep state. If
you consider both as one program, it’s stateful; if you consider the server in isolation, it’s
stateless.

In this chapter, you’ll see how two apparently contradictory ideas—keeping state in memory, and
avoiding state mutation—can be reconciled in a stateful functional program. You’ll then see how
functions that handle state can be composed, using the techniques you learned in chapter 11.

(288)

12.1. Programs that manage state

In this section, you’ll see a very simple command-line program that enables the user to get
foreign exchange rates (FX rates). A sample interaction with the program would be as follows
(bold letters indicate user input):

Enter a currency pair like 'EURUSD', or 'q' to quit

usdeur

fetching rate...

0.9162

gbpusd

fetching rate...

1.2248

q

An initial stateless implementation is shown in the following listing.

Listing 12.1. Stateless implementation of a simple program to look up FX rates

public class Program

{

 public static void Main()

 {

 WriteLine("Enter a currency pair like 'EURUSD', or 'q' to quit");

 for (string input; (input = ReadLine().ToUpper()) != "Q";)

 WriteLine(Yahoo.GetRate(input));

 }

}

static class Yahoo

{

 public static decimal GetRate(string ccyPair)

 {

 WriteLine($"fetching rate...");

 var uri = $"http://finance.yahoo.com/d/quotes.csv?f=l1&s={ccyPair}=X";

 var request = new HttpClient().GetStringAsync(uri);

 return decimal.Parse(request.Result.Trim());

 }

}

You can pretty much ignore the implementation details of the Yahoo class. We only care about the
fact that its GetRate function takes a currency pair identifier such as “EURUSD” (for Euro/US
Dollar) and returns the exchange rate.

The program works, but if you ask it for the same pair n times in a row, it will perform an HTTP
request every time. There are several reasons why you might like to limit the number of
unnecessary requests—performance, network use, or cost incurred per request. Next, we’ll
introduce an in-memory cache to avoid looking up rates we’ve already retrieved.

12.1.1. Maintaining a cache of retrieved resources

We want to store rates in a cache when they’re retrieved, and only make HTTP requests for rates
we haven’t seen before, as shown in figure 12.1.

Figure 12.1. Keeping a cache of previously retrieved rates

(289)

Of course, as functional programmers, we want to do this without state mutation. What will be
the type of the program’s state? A dictionary would be a natural choice, mapping the pair
identifier (such as “EURUSD”) to the retrieved exchange rate. Just to make sure we don’t mutate
it, let’s make it an immutable dictionary: Immutable-Dictionary<string, decimal>. And because
that’s quite an ugly type, we’ll alias it as Rates to make the code less verbose.

Here’s an implementation that stores already-retrieved rates in the cache, and only calls the
remote API if the rate wasn’t previously retrieved.

Listing 12.2. Stateful implementation keeping a cache of rates, without state mutation

(290)

Look at the signature of the GetRate function, and compare it with Yahoo.GetRate, which it uses:

Yahoo.GetRate : string → decimal

Program.GetRate : string → Rates → (decimal, Rates)

If Yahoo.GetRate is the stateless version, Program.GetRate is the stateful version: it takes, along
with the requested currency pair, the current state of the program; it returns, along with the result,
the new state of the program. This is the key to writing stateful applications without mutation: if
global variables can’t be mutated, you must pass state around via arguments and return values.

Let’s now move up to MainRec (for recursive), which contains the basic control flow of the
program. The thing to note here is that it takes as an input parameter the current state of the
program, which it will pass on to GetRate to retrieve the new state (along with the rate, which is
printed). It ends by calling itself with the new state.

Finally, Main does nothing other than calling MainRec with the initial state of the program, which is
an empty cache. You can view the entire program execution as a loop with MainRec recursively
calling itself, passing the current version of the state as a parameter.

Note that, although there are no global variables in the program, it’s still a stateful program. The
program keeps some state in memory, which affects how the program operates.

Generally speaking, recursion is a risky business in C#, as it can blow the stack if more than
about 10,000 recursive calls are made. If you wanted to avoid the recursive definition, you could
use a loop instead, and Main could be rewritten as follows.

Listing 12.3. Converting a recursive function to a loop with a local mutable variable

(291)

Here, instead of the recursive call, we keep a local, mutable variable, state, which is reassigned
to the new state as needed. We’re not mutating any global state, so the fundamental idea still
holds.

For the remaining examples, I’ll stick to the recursive version, which I think is clearer.

12.1.2. Refactoring for testability and error handling

You’ve seen how you can create a stateful program that doesn’t require mutation. Before we
move on, I’ll take advantage of this fairly complete example to illustrate some of the concepts
introduced earlier in the book around testability and error handling.

You’ll notice that although there are no side effects in terms of state mutation, there are I/O side
effects everywhere, so the program isn’t at all testable. We can refactor GetRate to take the
function performing the HTTP request as an input argument, following the pattern explained in
chapter 2:

static (decimal, Rates) GetRate

 (Func<string, decimal> getRate, string ccyPair, Rates cache)

{

 if (cache.ContainsKey(ccyPair))

 return (cache[ccyPair], cache);

 var rate = getRate(ccyPair);

 return (rate, cache.Add(ccyPair, rate));

}

Now GetRate has no side effects other than those that may occur by calling the given delegate,
getRate. As a result, it’s easy to unit test this function by providing a delegate with a predictable
behavior. You can probably see how MainRec could likewise be brought under test by injecting
functions to invoke for I/O.

Next, there’s no error handling at all: if you enter the name of a currency pair that doesn’t exist,
the program just crashes. Let’s put Try to good use. First, we’ll enrich Yahoo with a method
returning a Try:

static class Yahoo

{

 public static Try<decimal> TryGetRate(string ccyPair)

 => () => GetRate(ccyPair);

}

TryGetRate does nothing other than wrap the unsafe call to GetRate in a Try. Our main class’s
GetRate method must now change its signature to take not a function returning a decimal, but a
Try<decimal>. Accordingly, its return type will also be wrapped in a Try. Here’s the signature
before and after:

before : (string → decimal) → string → (decimal, Rates)

after : (string → Try<decimal>) → string → Try<(decimal, Rates)>

The refactored implementation is shown in the following listing.

Listing 12.4. The program refactored to use Try for error handling

public class Program

{

 public static void Main()

 => MainRec("Enter a currency pair like 'EURUSD', or 'q' to quit"

 , Rates.Empty);

(292)

 static void MainRec(string message, Rates cache)

 {

 WriteLine(message);

 var input = ReadLine().ToUpper();

 if (input == "Q") return;

 GetRate(Yahoo.TryGetRate, input, cache) .Run().Match(

 ex => MainRec($"Error: {ex.Message}", cache),

 result => MainRec(result.Rate.ToString(), result.NewState));

 }

 static Try<(decimal Rate, Rates NewState)> GetRate

 (Func<string, Try<decimal>> getRate, string ccyPair, Rates cache)

 {

 if (cache.ContainsKey(ccyPair))

 return Try(() => (cache[ccyPair], cache));

 else return from rate in getRate(ccyPair)

 select (rate, cache.Add(ccyPair, rate));

 }

}

Notice how we were able to add testability and error handling in a relatively painless way,
without puffing up the implementation with interfaces, try/catch blocks, and so on. Instead, we
have more powerful function signatures, and more explicit relations between functions via
parameter passing.

12.1.3. Stateful computations

As you’ve seen in this section, if you want to handle state functionally—that is, without state
mutation—state must be made available to functions as an input argument, and functions that
affect the state must return the updated state as part of their result. The remaining part of this
chapter focuses on stateful computations, which are functions that interact with some state.

Definition

Stateful computations are functions that take a state (as well as, potentially, other arguments),
and return a new state (along with, potentially, a return value). They’re also called state
transitions.

Stateful computations may appear both in stateful and stateless programs. You’ve already seen a
few examples: in the previous scenario, GetRate is a stateful computation because it takes some
state (the cache) along with a currency pair, and returns the updated state along with the
requested rate. In chapter 10, the static Account class contained only stateful computations, each
taking an AccountState (along with a command) and returning a new AccountState (along with an
event to store), although in this case things were slightly complicated by the result being
wrapped in a Validation.

If you want to combine several stateful computations, the process of always passing the state into
a function, extracting it from the result, and passing it to the next function can become quite
tedious. Fortunately, stateful computations can be composed monadically, in a way that hides the
state-passing, as you’ll see next. The rest of this chapter contains advanced material, which is not
required to understand the following chapters, in case you decide to skip ahead.

(293)

12.2. A language for generating random data

Random data has many legitimate practical uses, including property-based testing (which I
discussed in chapter 8), load testing (where you generate lots of random data and then bombard
your system and see how it holds up), and simulation algorithms like Monte Carlo. In this
context, I’m mainly interested in presenting random generation as a very good and fairly simple
example of how stateful computations compose.

To get started, type the following into the REPL:

var r = new Random(100);

r.Next() // => 2080427802

r.Next() // => 341851734

r.Next() // => 1431988776

Since you’re explicitly passing the value 100 as a seed for the random generator, you should get
exactly the same results. As you can see, it’s not that random after all. It’s next to impossible to
get real randomness with our current computers; instead, random generators use a scrambling
algorithm to deterministically produce an output that looks random. Typically, you don’t want to
get the same sequence of values every time, so a Random instance is usually initialized without an
explicit seed, in which case the current time is used.

So, if Random is deterministic, how does it produce a different output every time you call Next?
The answer is that Random is stateful: every time you call Next, the state of the instance changes, so
that the following call to Next will yield a new value. In other words, Next has side effects:
although Next produces an int as its explicit output, there’s an implicit input (the current state of
the Random instance) that determines the output, and another implicit output, the new state of the
Random, that will determine the output of the following call to Next.

We’re going to create a side-effect-free random generator, where all inputs and outputs are
explicit. Generating a number value is a stateful computation, because it requires a seed, and it
must also generate a new seed to be used in the next generation. We don’t want to only generate
integers, but values of any type, so the type of a generator function can be captured with the
following delegate:

public delegate (T Value, int Seed) Generator<T>(int seed);

That is, a Generator<T> is a stateful computation that takes an int value as a seed (the state), and
returns a tuple consisting of the generated T and a new seed, which can be used to generate a
subsequent value. The standard arrow-notation signature of a Generator<T> is

int → (T, int)

To run a generator, we can define the following Run methods:

public static T Run<T>(this Generator<T> gen, int seed)

 => gen(seed).Value;

public static T Run<T>(this Generator<T> gen)

 => gen(Environment.TickCount).Value;

The first overload runs the generator with the given seed and just returns the generated value,
disregarding the state. The second overload uses the clock to get a different seed value each time
it’s called (it’s therefore impure and not testable, unlike the first overload).

(294)

Next, let’s create some generators.

12.2.1. Generating random integers

The basic building block we need is a generator that scrambles the seed value into a new int.
Here’s one possible implementation.

Listing 12.5. A stateful computation returning a pseudo-random number

public static Generator<int> NextInt = (seed) =>

{

 seed ^= seed >> 13;

 seed ^= seed << 18;

 int result = seed & 0x7fffffff;

 return (result, result);

};

This is a generator that, when given a seed, scrambles it to obtain another integer that looks
unrelated.[2] It then returns that value both as a result value, and as a seed to be used in the
following computation.

2

The specifics of the algorithm are irrelevant for the purposes of this discussion. There are
many algorithms for generating pseudo-random numbers.

Things start to get exciting when you want to generate more complex values. It turns out that if
you can generate a random int, you can generate random values for arbitrarily complex types.
But let’s start with baby steps: you know how to write a generator for an int; how could you
write a generator for a simpler type, such as a Boolean?

12.2.2. Generating other primitives

Remember, a generator takes a seed and returns a new value (in this case, a generated Boolean),
along with a new seed. The skeleton of a Generator<bool> would be as follows:

public static Generator<bool> NextBool = (seed) =>

{

 bool result = // ???

 int newSeed = // ???

 return (result, newSeed);

};

How can we go about it? We already have a generator for an int, so we can generate an int and
return true/false depending on whether the generated int is even/odd, while taking advantage of
the new seed computed when generating the int. Essentially, we’re using NextInt, transforming
the resulting int into a bool and reusing the seed, as illustrated in figure 12.2.

Figure 12.2. Using the NextInt generator to generate a Boolean

(295)

The implementation is as follows:

public static Generator<bool> NextBool = (seed) =>

{

 var (i, newSeed) = NextInt(seed);

 return (i % 2 == 0, newSeed);

};

Now let’s think of this differently. What we’re doing here is effectively mapping a function that
turns an int into a bool, while reusing the new seed returned by the existing NextInt generator.
We can generalize this pattern to define Map: if you have a Generator<T> and a function f : T → R,
you can obtain a Generator<R> by running the generator to obtain a T and a new seed, then
applying f to obtain an R, and returning it along with the new seed.

In code, the implementation of Map/Select looks like this.

Listing 12.6. Definition of Map for Generator<T>

We can now define generators for types that carry less information than an int, such as bool or
char, much more concisely, as in the following listing.

Listing 12.7. Building upon NextInt to generate other types

That’s much more readable because we don’t have to explicitly worry about the seed, and we can
read the code in terms of “generate an int, and return whether it’s even.”

(296)

12.2.3. Generating complex structures

Now let’s move on and see how we can generate more complex values. Let’s try to generate a
pair of integers. We’d have to write something like this:

public static Generator<(int, int)> PairOfInts = (seed0) =>

{

 var (a, seed1) = NextInt(seed0);

 var (b, seed2) = NextInt(seed1);

 return ((a, b), seed2);

};

Here you see that, for each stateful computation (or for each time we generate a random value),
we need to extract the state (the newly created seed) and pass it on to the next computation. This
is rather noisy. Fortunately we can do away with the explicit state-passing by composing the
generators with a LINQ expression.

Listing 12.8. Defining a function that generates a pair of random integers

This is much more readable, but under the covers it’s the same as before. This works because
I’ve defined an implementation of Bind/SelectMany that takes care of “threading the state”; that is,
passing it from one computation to the next. Graphically, Bind works as shown in figure 12.3.
Listing 12.9 shows the corresponding code.

Figure 12.3. Definition of Bind for Generator<T>

Listing 12.9. Definition of Bind for Generator<T>

public static Generator<R> Bind<T, R>

 (this Generator<T> gen, Func<T, Generator<R>> f)

 => seed0 =>

 {

 var (t, seed1) = gen(seed0);

 return f(t)(seed1);

 };

Now we have all the building blocks to generate arbitrarily complex types. Say we want to create

(297)

an Option<int>. That’s easy—generate a Boolean for the state of the Option and an int for the
value:

public static Generator<Option<int>> OptionInt =>

 from some in NextBool

 from i in NextInt

 select some ? Some(i) : None;

This should look familiar: you saw some very similar code in chapter 9 when we were using
FsCheck to define property tests, and we needed to provide a method for generating random
Options. Indeed, FsCheck’s random generator is defined along the same lines as this one.

Next we’ll generate a sequence of ints. That’s slightly more complex.

Listing 12.10. Generating a list of random numbers

public static Generator<IEnumerable<int>> IntList

 => from empty in NextBool

 from list in empty ? Empty : NonEmpty

 select list;

static Generator<IEnumerable<int>> Empty

 => Generator.Return(Enumerable.Empty<int>());

static Generator<IEnumerable<int>> NonEmpty

 => from head in NextInt

 from tail in IntList

 select List(head).Concat(tail);

public static Generator<T> Return<T>(T value)

 => seed => (value, seed);

Let’s start with the top-level IntList: we generate a random Boolean to tell us if the sequence
should be empty.[3] If so, we use Empty, which is a generator that always returns an empty
sequence; otherwise, we return a non-empty sequence by calling NonEmpty. This generates an int
as the first element and a random sequence to follow it. Note that Empty uses the Return function
for Generator, which lifts a value into a generator that always returns that value and doesn’t affect
the state it’s given.

3

This means that, statistically, half the generated lists will be empty, a quarter of the lists will
have one element, and so on, so this generator is very unlikely to produce a long list. You
can follow a different approach and generate a random length first, presumably within a
given range, and then populate the values. As this shows, once you start to generate random
data, it’s important to define parameters that govern the random generation.

What about generating a string? A string is essentially a sequence of characters, so we can just
generate a list of ints, convert each int to a char, and build a string from the resulting sequence
of characters. As you can see, we follow this approach to generate a language for combining
generators of various types into generators for arbitrarily complex types.

(298)

12.3. A general pattern for stateful computations

There are many other scenarios in which we may want to compose several stateful computations
—other than generating random values. For this, we can use a more general delegate,
StatefulComputation:

delegate (T Value, S State) StatefulComputation<S, T>(S state);

A StatefulComputation<T> is a function in this form:

S → (T, S)

T is the function’s result value, and S is the state.[4]

4

In FP lingo, this is called the state monad. This is a truly terrible name to describe a function
that takes some state as an argument. This unfortunate name is probably the greatest hurdle
to understanding it.

You can compare this to the signature of Generator<T> to see how similar they are:

StatefulComputation<T> : S → (T, S)

Generator<T> : int → (T, int)

With Generator, the state that gets passed in and out is always an int; with the more general
StatefulComputation, the state could be of an arbitrary type S. Thus we can define Map and Bind in
the same way (the only difference being the additional type parameter), and let them take care of
“threading” the state between one computation and the next.

In chapter 9 we discussed trees, and you saw how you could define a Map function that creates a
new tree, where each element is the result of applying a function to each value in the original
tree. Imagine that you now want to assign a number to each element, as shown in figure 12.4.

Figure 12.4. Numbering each element in a tree

This operation is similar to Map, in the sense that you must still traverse the tree and apply a

(299)

function to each element, but you must now hold some state—a counter value—that needs to be
used to label each leaf and be incremented.

Let’s start by defining a Numbered<T> class that wraps a T and a number (the constructor is omitted
for brevity):

public class Numbered<T>

{

 public int Number { get; }

 public T Value { get; }

}

This means the operation we’re trying to model can be expressed as a function from Tree<T> to
Tree<Numbered<T>>.

To start with, here’s an implementation that traverses the tree, explicitly passing the state around.

Listing 12.11. Numbering the leaves of a tree by explicitly passing a counter value

We start the computation with a count of 0. The numbering function simply matches on the type
of tree. If it’s a leaf, then it contains a T, so Number returns the result/new-state pair containing as
the result a Numbered<T> (wrapping the T and the current count) and as the new state the
incremented counter. If it’s a branch, then we recursively call Number on the left and right
subtrees. Because each of these operations returns an updated state, we must thread the state
along and return it in the result value.

Although I find the preceding solution satisfactory, it’s true that manually passing state along
introduces some noise. We can get rid of that by refactoring the code to use the
StatefulComputation delegate instead.

We’ll start by defining a simple stateful computation that takes an int (the state, which in this
case is the counter), and returns the counter as the value, and the incremented state as the new

(300)

state:

static StatefulComputation<int, int> GetAndIncrement

 = count => (count, count + 1);

GetAndIncrement(0) // => (0, 1)

GetAndIncrement(6) // => (6, 7)

Remember, a stateful computation returns both a value and a new state. GetAndIncrement returns
the incremented counter as the new state, and the current counter value as the returned value.
(This is what “gets” the state; that is, it makes the state the inner value of the computation. You
can now refer to it in a LINQ expression and assign it to count in the following code.) Now we
can rewrite our tree numbering function as follows.

Listing 12.12. Numbering the leaves of a tree using LINQ to take care of passing the state

As you can see, when you’re composing a sequence of several stateful computations, as in the
Branch case, LINQ can really improve readability. Otherwise, I find that passing the state around
explicitly is clearer. Note that the preceding function returns a computation, which does nothing
until it’s given an input state:

Number(tree).Run(0)

Although stateful computations are ubiquitous, the need to chain several computations isn’t as
frequent. It does crop up often in certain areas, though, such as simulations or parsers. A
functional parser, for example, is usually modeled as a function that takes a string (the state),
consumes part of the string, and produces a result consisting of a structured representation of
what’s been parsed and the remainder of the string that’s left to parse (the new state).

(301)

Summary

When writing stateful programs, you can avoid changing state as a side effect by always
passing the state explicitly as part of a function’s input and output.
Stateful computations are functions in the form S → (T, S). That is, they take some state
and return a value as well as an updated state.
Stateful computations can be composed monadically, to reduce the syntactic burden of
passing the state from one computation to the next.

(302)

Chapter 13. Working with asynchronous
computations
This chapter covers

Using Task to represent asynchronous computations
Composing asynchronous operations sequentially and in parallel
Traversables: handling lists of elevated types
Combining the effects of different monads

In today’s world of distributed applications, many operations are performed asynchronously. A
program may begin some operation that takes a relatively long time, such as requesting data from
another application, but it won’t sit idle, waiting for that operation to complete. Instead, it will go
on to do other work and resume the operation once the data has been received.

Asynchrony certainly is the bread and butter of today’s programmer. I waited until this late in the
book to deal with it because it adds a level of complexity, which I wanted to postpone in order to
make the ideas presented so far more approachable.

Asynchronous operations are represented in C# using Tasks, and in the first half of this chapter
you’ll see that Task<T> is not so different from other containers, such as Option<T>, Try<T>, and so
on.

As our list of containers keeps growing, we’ll inevitably hit the problem of combining different
containers. If you have a list of Tasks that you want to execute, how can you instead get a single
Task that will complete when all the operations have completed? If you have a value of type
Task<Validation<T>>, how do you compose it with a function, T → Task<R>, with the least amount
of type noise? The second part of this chapter will show you how to deal with these more
complex, stacked types.

(303)

13.1. Asynchronous computations

In this section, I’ll start by introducing the need for asynchrony and how Task is used to model
the asynchronous delivery of a value. You’ll then see that Task<T> is just another container for a
T, like Option and the others you’ve seen, and therefore supports operations like Map and Bind.

We’ll then address some frequently recurring concerns when working with Tasks: combining
several asynchronous operations, handling failure, performing multiple retries, and running tasks
in parallel.

13.1.1. The need for asynchrony

Some operations take longer than others—massively longer! Whereas the time required to
perform a typical computer instruction is in the order of nanoseconds, I/O operations such as
reading from the filesystem or making a network request are in the order of milliseconds, or even
seconds.

To get a better grasp on how big the difference is, let’s scale things up to something more
human: if an in-memory instruction such as adding two numbers took about a second, then a
typical I/O operation could take months or years. And, just as in real life you can wait a few
seconds at the water cooler while your cup is filled, you wouldn’t wait around at the bank for
weeks while your mortgage application is processed. Instead, you’d file your application, go
back to your daily life, and expect to be notified of the result in the future.

This is the idea behind asynchronous computations: kick off an operation that takes a long time,
move on to doing other work, and then come back once the operation has completed.

(304)

13.1.2. Representing asynchronous operations with Task

The main tool for working with asynchronous computations since C# 4 is the Task-Based
Asynchronous Pattern.[1] In a nutshell, here’s what it consists of:

1

I assume you’re already familiar with it. If not, you’ll find ample documentation on MSDN
by searching for “Task-Based Asynchronous Pattern.”

Use Task and Task<T> to represent asynchronous operations.
Use the await keyword to await the Task, which frees the current thread to do other work,
while the asynchronous operation completes.

For instance, consider the code you saw in section 12.1 that gets an exchange rate from the
Yahoo API (slightly refactored to highlight how Task is used in this case).

Listing 13.1. Blocking the current thread while a network call completes

In this code, the current thread pauses and waits for the result to be received from the remote
API. This is OK for a simple console application, but it would be unacceptable for most real-
world applications, whether client or server. There’s no need to block a thread while waiting for
a network call to complete.

You can refactor this code to perform the request asynchronously, as follows.

Listing 13.2. Using Task to represent an asynchronous operation

public static async Task<decimal> GetRate(string ccyPair)

{

 var s = await new HttpClient().GetStringAsync(QueryFor(ccyPair));

 return decimal.Parse(s.Trim());

}

Notice the changes:

The method now returns not a decimal, but a Task<decimal>.
await suspends the current context (freeing the thread to do other work), which is resumed
when the asynchronous operation has completed and its result is available.
You have to mark the method async. This is just noise and was added to allow backward

(305)

compatibility when await was added to the language.

Naming conventions

I strongly advise against naming Task-returning methods with the -Async suffix.[2]

2

This unfortunate convention was proposed by Microsoft in the early days of async. For one
thing, you don’t name methods that return a string with a special -Str suffix, do you? So
why would you with Task? The idea behind the convention was, I believe, to facilitate
disambiguation in APIs that expose both synchronous and asynchronous variants of the
same operation. But this leads to bad design: if there’s a reason for a method to be
asynchronous, then using the synchronous variant is suboptimal. An API should encourage
doing the right thing by only exposing the asynchronous variant. If both variants are
exposed, then, if anything, the synchronous version should be labeled with the -Sync suffix,
which should stick out like an eyesore. Good design makes it easy to do the right thing, so
forcing longer, noisier names for the asynchronous variant is bad design.

So far, no surprises. Now let’s look at Task<T> from a more functional point of view.

13.1.3. Task as a container for a future value

Given the perspective we’ve been building up in this book, it’s natural to look at Task<T> as just
another container of T. If Option<T> can be seen as a box that may contain a T, and Func<T> as a
container that can be run to get a T, then Task<T> can be seen as a box within which a T will
materialize at some time. So Task<T> can be seen as a construct that adds the effect of
asynchrony.

Task vs. Task<T>

Again, there’s a vexing dichotomy between the non-generic Task and the generic Task<T>:
asynchronous operations that yield void, and some type T, respectively.

In what follows, I’ll always use a return value (at least Unit), so even if I write Task for brevity,
you should take it to mean Task<T>.

To put this idea of a Task as a container into code, I’ve defined its Return, Map, and Bind functions,
effectively making Task<T> a monad over T.

Listing 13.3. Map and Bind can be defined trivially in terms of await

public static partial class F

{

 public static Task<T> Async<T>(T t)

 => Task.FromResult(t);

(306)

 public static async Task<R> Map<T, R>

 (this Task<T> task, Func<T, R> f)

 => f(await task);

 public static async Task<R> Bind<T, R>

 (this Task<T> task, Func<T, Task<R>> f)

 => await f(await task);

}

I’ll use Async as the Return function for Task, which lifts a T into a Task<T>. It’s just a shorthand for
.NET’s Task.FromResult method.

Notice how easy it is to define Map and Bind with the await keyword. Why is it so easy?
Remember, Map extracts the inner value(s) from a container, applies the given function, and
wraps the result back up into a container. But this unwrapping and wrapping is exactly what the
await language feature does: it extracts the Task’s inner value (that is, the value the operation
returns when it completes), and when a method contains an await, its result is automatically
wrapped in a Task.[3] All that’s left for Map to do is to apply the given function to the awaited
value.

3

await works not only with Task, but any awaitable; that is, any value for which a
GetAwaiter(instance or extension) method returning an INotifyCompletion is defined.

Bind is similar. It awaits the given Task<T>, and when this completes, the resulting T can be
supplied to the bound function. This in turn returns a Task<R>, which must also be awaited before
the desired result of type R is obtained.

I’ve implemented the LINQ query pattern for Task along the same lines, so you can rewrite the
GetRate function using a LINQ comprehension.

Listing 13.4. Using LINQ comprehensions with Tasks

public static Task<decimal> GetRate(string ccyPair) =>

 from s in new HttpClient().GetStringAsync(QueryFor(ccyPair))

 select decimal.Parse(s.Trim());

public static async Task<decimal> GetRate(string ccyPair)

{

 var s = await new HttpClient().GetStringAsync(QueryFor(ccyPair));

 return decimal.Parse(s.Trim());

}

Listing 13.4 shows the implementation with LINQ and the implementation with await to stress
their similarity. In the version that uses LINQ, the from clause takes the inner value of the Task
and binds it to the variable s (more generally, when you see a clause like from s in m, you can
read it as, “extract the inner value of m and call it s, then...”); this is exactly what await does. The
difference is that await is specific to Task, whereas LINQ can be used with any monad.

Lazy vs. asynchronous computations

Lazy and asynchronous computations both allow you to write code that “runs in the future.” That
is, at a certain point your program defines what to do with a value T returned by a lazy
computation Func<T> or an asynchronous computation Task<T>, but those instructions are then
executed at a later point. There are also important differences between the two.

(307)

From the point of view of the code that defines the computation

Creating a lazy computation (like a Func, Try, StatefulComputation, and so on) doesn’t start
the computation. In fact, it does nothing (no side effects).
Creating a Task does kick off an asynchronous computation.

From the point of view of the code consuming the computed result

The code consuming a lazy value decides when to run the computation, obtaining the
computed value.
The code consuming an asynchronous value has no control over when it will receive the
computed value.

13.1.4. Handling failure

I mentioned that Task<T> can be seen as a construct that adds the effect of asynchrony. In fact, it
also captures error handling. Because asynchronous operations are, most frequently, I/O
operations, there’s a high chance of something going wrong, and fortunately Task<T> also has
error handling, via the Status and Exception properties.

This is important. Imagine that you have a synchronous computation and are using
Exceptional<T> to model a computation that may fail. If you now want to make the computation
asynchronous, you don’t need a Task<Exceptional<T>>, but only a Task<T>.

To see some examples of how various asynchronous computations can be composed, let’s look at
some slightly more complex variations on the scenario of retrieving exchange rates.

Imagine that your company has purchased a subscription with CurrencyLayer, a company
providing good quality exchange rate data (that is, data with a small delay compared to the
market) via an API. If, for some reason, a call to CurrencyLayer’s API fails, you want to fall
back to the good old Yahoo API (whose rates are less timely, but still good enough for use as a
fallback).

First, assume you define two classes encapsulating access to the APIs:

public static class Yahoo

{

 public static Task<decimal> GetRate(string ccyPair) => //...

}

public static class CurrencyLayer

{

 public static Task<decimal> GetRate(string ccyPair) => //...

}

The implementation for Yahoo is the same as you’ve seen in listing 13.2; CurrencyLayer is
implemented along the same lines, but adapted to CurrencyLayer’s API.

The interesting part is combining the two calls to GetRate. For this kind of task, you can use the
OrElse function, which takes a task and a fallback to use in case the task fails (the idea is similar
to the OrElse defined for Option in chapter 11).

(308)

Notice that OrElse assumes that a Task either fails or succeeds. In reality, C# Tasks also support
cancellation, but this feature is rarely used and complicates the API, so I won’t deal with
cancellation here.

You can now use this as follows:

CurrencyLayer.GetRate(ccyPair)

 .OrElse(() => Yahoo.GetRate(ccyPair))

The result is a new Task that will produce the value returned by CurrencyLayer if the operation
was successful, and otherwise the value returned by Yahoo.

There is, of course, always the possibility that both calls fail—if, say, the network is down. So
we also need a function to specify what to do when a task fails. I’ll call it Recover:

public static Task<T> Recover<T>

 (this Task<T> task, Func<Exception, T> fallback)

 => task.ContinueWith(t =>

 t.Status == TaskStatus.Faulted

 ? fallback(t.Exception)

 : t.Result);

You can use Recover as follows:

Yahoo

 .GetRate("USDEUR")

 .Map(rate => $"The rate is {rate}")

 .Recover(ex => $"Error fetching rate: {ex.Message}")

Recover is something you’d typically use at the end of a workflow to specify what to do if an
error occurred somewhere along the way. In other words, you can use Recover in the same way
you’d use Match for things like Option or Either. But Match works synchronously; a Task doesn’t
have anything to match on because its status isn’t available until some point in the future, so
technically Recover is more like Map for the faulted case (you can confirm this by looking at its
signature).

It’s also reasonable to define an overload of Map that takes a handler for both the success and
failure cases:

public static Task<R> Map<T, R>

 (this Task<T> task, Func<Exception, R> Faulted, Func<T, R> Completed)

 => task.ContinueWith(t =>

 t.Status == TaskStatus.Faulted

 ? Faulted(t.Exception)

 : Completed(t.Result));

This could then be used as follows:

Yahoo.GetRate("USDEUR").Map(

(309)

 Faulted: ex => $"Error fetching rate: {ex.Message}",

 Completed: rate => $"The rate is {rate}")

13.1.5. An HTTP API for currency conversion

Let’s put it all together by writing an API controller that allows clients to convert an amount
from one currency to another. A sample interaction with this API is as follows:

$ curl http://localhost:5000/convert/1000/USD/to/EUR -s

896.9000

$ curl http://localhost:5000/convert/1000/USD/to/JPY -s

103089.0000

$ curl http://localhost:5000/convert/1000/XXX/to/XXX -s

{"message":"An unexpected error has occurred"}

That is, you can call the API on a route such as “convert/1000/USD/to/EUR” to find out how
many euros are equivalent to 1000 US dollars. Here’s the implementation:

When the application gets a request, it calls the CurrencyLayer API to get the relevant rate. If
this fails, it calls the Yahoo API. Once it has a rate, it uses it to calculate the equivalent amount
in the target currency. Finally, it maps a successful result to a 200 and failure to a 500.

You may remember from chapter 6 that once you’re in the elevated world, you should stay in it
for as long as possible. This is all the more true of Task: being in the world of Task means writing
code that runs in the future, so leaving the elevated world in this case means blocking the thread
and waiting for the future to catch up. We hardly ever want to do that.

Note that the controller method returns Task<IActionResult>. That is, ASP.NET will send the
response to the client when the Task has run to completion, and you don’t need to worry about
when this will take place. You never need to leave the elevated world of Task in this case.

13.1.6. If it fails, try a few more times

When remote operations, such as a call to an HTTP API, fail, the reasons for failure are often
transient: maybe there’s a glitch in connectivity, or the remote server is being restarted. In other
words, an operation that fails once may succeed if you retry a few seconds or minutes later.

The need to retry when an operation fails is a common requirement when dealing with third-
party APIs over whose health you have no control. Here’s one simple and elegant solution that
performs an asynchronous operation, retrying for a specified number of times if it fails.

Listing 13.5. Retrying with exponential backoff

(310)

To use it, simply wrap the function performing the remote operation in an invocation to the Retry
function:

Retry(10, 1000, () => Yahoo.GetRate("GBPUSD"))

This specifies that the operation should be retried at most 10 times, with an initial delay of one
second between attempts. The last argument is the operation to perform, specified lazily because
invoking the function kicks off the task.

Notice that Retry is recursive: if the operation fails, it waits for the specified interval and then
retries the same operation, decreasing the number of retries left, and doubling the interval to wait
the next time around (a retry strategy known as exponential backoff).

13.1.7. Running asynchronous operations in parallel

Because Task is used to represent operations that take time, it’s only natural that you may want to
execute them in parallel when possible. Imagine you want to check prices offered by different
airlines. Assume you have several classes encapsulating access to the airlines’ APIs, each
implementing the Airline interface:

interface Airline

{

 Task<IEnumerable<Flight>> Flights(string from, string to, DateTime on);

 Task<Flight> BestFare(string from, string to, DateTime on);

}

Flights gets you all the flights offered by the airline for a given route and date, whereas BestFare
only gets you the cheapest flight. The flight details are queried via a remote API, so naturally the
results are wrapped in a Task.

Now imagine for a second that we’re back in the 90s, and you’re interested in touring Europe on
a shoestring. You’d need to look at the only two low-cost airlines on the market: EasyJet and
Ryanair. You could then find the best price offered between two airports on a given date like so:

Airline ryanair;

Airline easyjet;

Task<Flight> BestFareM(string @from, string to, DateTime @on)

 => from r in ryanair.BestFare(@from, to, @on)

 from e in easyjet.BestFare(@from, to, @on)

 select r.Price < e.Price ? r : e;

This works, but can you see the catch? Because LINQ queries are monadic, easyjet.BestFare will
only be called after ryanair.BestFare has completed (you’ll see why in a moment). But why wait?
After all, the two calls are completely independent, so there’s no reason we can’t make the calls
in parallel.

You may remember from chapter 8 that when you have independent computations, you can use
applicatives. The following listing shows Apply defined for Task, which again is implemented

(311)

rather trivially in terms of await.

Listing 13.6. Implementation of Apply for Task

public static async Task<R> Apply<T, R>

 (this Task<Func<T, R>> f, Task<T> arg)

 => (await f)(await arg);

public static Task<Func<T2, R>> Apply<T1, T2, R>

 (this Task<Func<T1, T2, R>> f, Task<T1> arg)

 => Apply(f.Map(F.Curry), arg);

As with other containers, the important overload is the first one (where a unary function is
wrapped in a container), and overloads for greater arities can be defined by just currying that
function. As with Map and Bind, the implementation simply uses the await keyword to reference
the Task’s inner value. Apply awaits the wrapped function, awaits the wrapped argument, and
applies the function to the argument; the result is wrapped in a task automatically as a result of
using await.

So you can rewrite the preceding computation using Apply, as follows.

Listing 13.7. Performing two Tasks in parallel with Apply

Task<Flight> BestFareA(string from, string to, DateTime on)

 => Async(PickCheaper)

 .Apply(ryanair.BestFare(from, to, on))

 .Apply(easyjet.BestFare(from, to, on));

static Func<Flight, Flight, Flight> PickCheaper

 = (l, r) => l.Price < r.Price ? l : r;

In this version, the two calls to BestFare are kicked off independently, so they run in parallel, and
the total time needed for BestFareA to complete is determined by the time required for the longer
of the API calls to complete—not their sum.

To get a better understanding of why this is, compare Apply with Bind:

Listing 13.8. Bind runs tasks sequentially, Apply in parallel

public static async Task<R> Bind<T, R>

 (this Task<T> task, Func<T, Task<R>> f)

 => await f(await task);

public static async Task<R> Apply<T, R>

 (this Task<Func<T, R>> f, Task<T> arg)

 => (await f)(await arg);

Bind first awaits the given Task<T>, and only then evaluates the function starting the second task.
It runs the tasks sequentially and can’t do otherwise because a value for T is required in order to
create the second task.

Apply, on the other hand, takes two Tasks, meaning that both tasks have been started. With this in
mind, let’s revisit this code:

Async(PickCheaper)

 .Apply(ryanair.BestFare(from, to, on))

 .Apply(easyjet.BestFare(from, to, on));

When you call Apply the first time (with the Ryanair task), it immediately returns a new Task,

(312)

without waiting for the Ryanair task to complete (that’s the behavior of the await inside Apply).
Then the program immediately goes on to create the EasyJet task. As a result, both tasks run in
parallel.

In other words, the difference in behavior between Bind and Apply is dictated by their signatures:

With Bind, the first Task must be awaited in order to create the second task, so it should be
used when the creation of a Task depends on the return value of another.
With Apply, both tasks are provided by the caller, so you should use it when the tasks can
be started independently.

Now let’s flash-forward to today: low costs have multiplied, and traditional airlines compete
with them on price. We now have not two, but a long list of airlines whose offers we should take
into account. To tackle this more complex scenario, we’ll need a new tool: Traverse, which I’ll
introduce next.

The rest of this chapter contains advanced material that’s not required to understand the
following chapters, in case you decide to skip ahead.

(313)

13.2. Traversables: working with lists of elevated values

Traverse is one of the slightly more esoteric core functions in FP, and it allows you to work with
lists of elevated values. It’s probably easiest to approach through an example.

Imagine a very simple command-line application that reads a comma-separated list of numbers
entered by the user, and returns the sum of all the given numbers. We could start along these
lines:

We split the input string to get an array of strings, and remove any whitespace with Trim. We can
then map onto this list the parsing function Double.Parse, which has signature string →
Option<double>. As a result, we get an IEnumerable<Option<double>>.

Instead, what we really want is an Option<IEnumerable<double>>, which should be None if any of
the numbers failed to parse, in which case we can warn the user to correct their input.[4] We saw
that Map will yield a type where the effects are stacked up in the opposite order than the one we
need.

4

You may remember from chapter 4 that we could use Bind instead of Map to filter out all the
None values, and only add up the numbers that were successfully parsed. That’s not desirable
for this scenario: we’d be silently removing values that the user probably mistyped in error,
effectively giving an incorrect result.

This is a common enough scenario that there’s a specific function called Traverse to address it,
and a type for which Traverse can be defined is called a traversable. Figure 13.1 shows the
relation between Map and Traverse.

Figure 13.1. Comparing Map and Traverse

(314)

Let’s generalize the idea of a traversable:

We have a “traversable” structure of Ts, so let’s indicate this with Tr<T>. In this example
it’s IEnumerable<string>.
We have a world-crossing function, f : T → A<R>, where A must be at least an applicative.
In this example it’s Double.Parse, which has type string → Option<double>.
We want to obtain an A<Tr<R>>.

The general signature for Traverse should be

Tr<T> → (T → A<R>) → A<Tr<R>>

Particularized for this example, it looks like this:

IEnumerable<T> → (T → Option<R>) → Option<IEnumerable<R>>

13.2.1. Validating a list of values with monadic Traverse

Let’s see how we could go about implementing Traverse with the preceding signature. If you
look at the top-level types in the signature, you’ll see that we start with a list and end up with a
single value. Remember, we reduce lists to a single value using Aggregate, which was covered in

(315)

section 7.6.

Aggregate takes an accumulator and a reducer function, which combines each element in the list
with the accumulator. The accumulator will be returned as the result if the list is empty. This is
easy; we just create an empty IEnumerable and lift it into an Option using Some.

Listing 13.9. Monadic Traverse with an Option-returning function

Now let’s look at the reducer function—that’s the interesting bit. Its type is

Option<IEnumerable<R>> → T → Option<IEnumerable<R>>

When we apply the function f to the value t, we get an Option<R>. After that, we must satisfy the
signature:

Option<IEnumerable<R>> → Option<R> → Option<IEnumerable<R>>

Let’s simplify this for a moment by removing the Option from each element:

IEnumerable<R> → R → IEnumerable<R>

Now it becomes clear that the problem is that of appending a single R to an IEnumerable<R>,
yielding an IEnumerable<R> with all the elements traversed so far. The appending should happen
within the elevated world of Option, since all the values are wrapped in an Option. As you learned
in chapter 8, we can apply functions in the elevated world in the applicative or the monadic way.
Here we use the monadic flow.

We’re now ready to go back to the scenario of parsing a comma-separated list of numbers typed
by the user. We can put Traverse to use and implement the program as follows.

Listing 13.10. Safely parses and sums a comma-separated list of numbers

using Double = LaYumba.Functional.Double;

using String = LaYumba.Functional.String;

public static void Main()

{

 var input = Console.ReadLine();

 var result = Process(input);

 Console.WriteLine(result);

}

static string Process(string input)

 => input.Split(',') // Array<string>

 .Map(String.Trim) // IEnumerable<string>

 .Traverse(Double.Parse) // Option<IEnumerable<double>>

 .Map(Enumerable.Sum) // Option<double>

 .Match(

 () => "Some of your inputs could not be parsed",

(316)

 (sum) => $"The sum is {sum}");

In the preceding listing, Main performs the I/O, and all the logic is in the Process function.

Let’s test it to see the behavior:

Process("1, 2, 3")

// => "The sum is 6"

Process("one, two, 3")

// => "Some of your inputs could not be parsed"

13.2.2. Harvesting validation errors with applicative Traverse

Let’s improve the error handling so we can tell the user which values are wrong. For that, we
need Validation, which can contain a list of errors. This means we’ll also need an implementation
of Traverse that takes a list of values and a Validation-returning function.

We can start by adapting the implementation that takes an Option-returning function.

Listing 13.11. Monadic Traverse with a Validation-returning function

public static Validation<IEnumerable<R>> TraverseM<T, R>

 (this IEnumerable<T> ts, Func<T, Validation<R>> f)

 => ts.Aggregate(

 seed: Valid(Enumerable.Empty<R>()),

 func: (valRs, t) => from rs in valRs

 from r in f(t)

 select rs.Append(r));

The preceding implementation is identical to the implementation that takes an Option-returning
function except for the signature and the fact that the Return function being used is Valid instead
of Some. This duplication is due to the lack of an abstraction common to both Option and
Validation.[5]

5

The reasons for this were discussed in chapter 4, in the “Why is functor not an interface?”
sidebar.

Notice that I’ve called the function TraverseM (for monadic) because the implementation is
monadic: if one item fails validation, the validation function won’t be called for any of the
subsequent items.

If, instead, we want errors to accumulate, we should use the applicative flow. We can therefore
define TraverseA (for applicative) with the same signature, but using the applicative flow.

Listing 13.12. Applicative Traverse with a Validation-returning function

(317)

The implementation of TraverseA is very similar to TraverseM, except that in the reducer function,
the appending is done with the applicative, rather than monadic, flow. As a result, the validation
function f will be called for each T in ts, and all validation errors will accumulate in the resulting
Validation.

Because this is the behavior we usually want with Validation, I’ve defined Traverse to point to
the applicative implementation TraverseA, but there’s still scope for having TraverseM if you want
a short-circuiting behavior.

We can now refactor the program to use Validation.

Listing 13.13. Program that safely parses and sums a comma-separated list of numbers

static Validation<double> Validate(string s)

 => Double.Parse(s).Match(

 () => Error($"'{s}' is not a valid number"),

 (d) => Valid(d));

static string Process(string input)

 => input.Split(',') // Array<string>

 .Map(String.Trim) // IEnumerable<string>

 .Traverse(Validate) // Validation<IEnumerable<double>>

 .Map(Enumerable.Sum) // Validation<double>

 .Match(

 errs => string.Join(", ", errs),

 sum => $"The sum is {sum}");

The Main method is the same as before. If we test the Process function, we now get this:

Process("1, 2, 3")

// => "The sum is 6"

Process("one, two, 3")

// => "'one' is not a valid number, 'two' is not a valid number"

As you can see, in the second example the validation errors have accumulated as we traversed
the list of inputs. If we change to use the monadic implementation, TraverseM, we’ll only get the
first error.

13.2.3. Applying multiple validators to a single value

(318)

The preceding example demonstrates how to apply a single validation function to a list of values
you want to validate. What about the case in which you have a single value to validate and many
validation functions?

We tackled such a scenario in section 7.6.3, where we had a request object to validate, and a list
of validators, each of which checks that certain conditions for validity are met. We had to jump
through a few hoops to get a validation behavior where multiple errors were combined in the
result.

Now that you know about using Traverse with a Validation-returning function, we can write a
more elegant solution to this problem. Remember that we were using a delegate to capture a
function performing validation:

// T → Validation<T>

public delegate Validation<T> Validator<T>(T t);

The idea is to have a single Validator function that combines the validation of a list of Validators,
harvesting all errors. With Traverse, defining such a function is simple.

Listing 13.14. Aggregating errors from multiple validators

public static Validator<T> HarvestErrors<T>

 (params Validator<T>[] validators)

 => t

 => validators

 .Traverse(validate => validate(t))

 .Map(_ => t);

Here, Traverse returns a Validation<IEnumerable<T>>, collecting all the errors. If there are no
errors, the inner value, of type IEnumerable<T>, will contain as many instances of the input value t
as there are validators. The subsequent call to Map disregards this IEnumerable and replaces it with
the original object being validated. Here’s an example of using HarvestErrors in practice:

Validator<string> ShouldBeLowerCase

 = s => (s == s.ToLower())

 ? Valid(s)

 : Error($"{s} should be lower case");

Validator<string> ShouldBeOfLength(int n)

 => s => (s.Length == n)

 ? Valid(s)

 : Error($"{s} should be of length {n}");

Validator<string> ValidateCountryCode

 = HarvestErrors(ShouldBeLowerCase, ShouldBeOfLength(2));

ValidateCountryCode("us")

// => Valid(us)

ValidateCountryCode("US")

// => Invalid([US should be lower case])

ValidateCountryCode("USA")

// => Invalid([USA should be lower case, USA should be of length 2])

13.2.4. Using Traverse with Task to await multiple results

Traverse works with Task much as it does with Validation. We can define TraverseA, which uses
the applicative flow and runs all tasks in parallel, TraverseM, which uses the monadic flow and
runs the tasks sequentially, and Traverse, which defaults to TraverseA, because running in parallel

(319)

is usually preferable.

Given a list of long-running operations, we can use Traverse to obtain a single Task that we can
use to await all the results.

Let’s use this in our scenario of searching for flight fares. Remember, we have a list of airlines,
and each airline’s flights can be queried with a method that returns a Task<IEnumerable<Flight>>.
This time, imagine we want to get not just the cheapest flight, but all flights for the desired date,
sorted by price.

Notice what happens if we use Map:

IEnumerable<Airline> airlines;

IEnumerable<Task<IEnumerable<Flight>>> flights =

 airlines.Map(a => a.Flights(from, to, on));

We end up with an IEnumerable<Task<IEnumerable<Flight>>>—this isn’t at all what we want!

With Traverse, instead, we’ll end up with a Task<IEnumerable<IEnumerable <Flight>>>; that is, a
single task that will complete when all airlines have been queried (and will fail if any query
fails). The task’s inner value is a list of lists (one list for each airline), which can then be
flattened and sorted to get our list of results sorted by price:

async Task<IEnumerable<Flight>> Search(IEnumerable<Airline> airlines

 , string from, string to, DateTime on)

{

 var flights = await airlines.Traverse(a => a.Flights(from, to, on));

 return flights.Flatten().OrderBy(f => f.Price);

}

Flatten is simply a convenience function that calls Bind with the identity function, hence
flattening the nested IEnumerable into a single list of flights from all airlines, which are then
sorted by price.

Most of the time you’ll want the parallel behavior, so I’ve defined Traverse to be the same as
TraverseA. But if you have, say, 100 tasks, and the second one fails, then the whole task fails.
Using monadic traverse in this case would save you from running 98 tasks that would still be
kicked off when using applicative traverse. The implementation you choose depends on the use
case, and this is the reason for including both.

Let’s look at one final variation on this example. In real life, you probably don’t want your
search to fail if one of perhaps dozens of queries to a third-party API fails. Imagine you want to
display the best results available—like on many price comparison websites. If a provider’s API is
down, results from that provider won’t be available, but we still want to see results from all the
others.

The change is easy—we can use the previously defined Recover function, so that each query
returns an empty list of flights if the remote query fails:

async Task<IEnumerable<Flight>> Search(IEnumerable<Airline> airlines

 , string from, string to, DateTime on)

{

 var flights = await airlines

 .Traverse(a => a.Flights(from, to, on)

 .Recover(ex => Enumerable.Empty<Flight>()));

 return flights.Flatten().OrderBy(f => f.Price);

}

(320)

Here we have a function that queries several APIs in parallel, disregards any failures, and
aggregates all the successful results into a single list sorted by price. I find this a great example
of how composing core functions—like Traverse, Bind, and others—allows you to specify rich
behavior with little code and effort.

13.2.5. Defining Traverse for single-value structures

So far you’ve seen how to use Traverse with an IEnumerable and a function that returns an Option,
Validation, Task, or any other applicative. It turns out that Traverse is even more general. That is,
IEnumerable isn’t the only traversable structure out there; you can define Traverse for many of the
constructs you’ve seen in the book.

If we take a nuts and bolts approach, we can see Traverse as a utility that stacks effects up the
opposite way as when performing Map:

Map : Tr<T> → (T → A<R>) → Tr<A<R>>

Traverse : Tr<T> → (T → A<R>) → A<Tr<R>>

So if we have a function that returns an applicative A, Map returns a type with the A on the inside,
whereas Traverse returns a type with the A on the outside.

For example, in chapter 6 we had a scenario in which we used Map to combine a Validation-
returning function with an Exceptional-returning function. The code went along these lines:

Func<BookTransfer, Validation<BookTransfer>> validate;

Func<BookTransfer, Exceptional<Unit>> save;

public Validation<Exceptional<Unit>> Handle(BookTransfer request)

 => validate(request).Map(save);

What if, for some reason, we wanted to return an Exceptional<Validation<Unit>> instead? Well,
now you know the trick: just replace Map with Traverse!

public Exceptional<Validation<Unit>> Handle(BookTransfer request)

 => validate(request).Traverse(save);

But can we make Validation traversable? The answer is yes. Remember that we can view Option
as a list with at most one element. The same goes for Either, Validation, and Exceptional: the
success case can be treated as a traversable with a single element; the failure case as empty.

In the preceding scenario, we’d need to define Traverse for Validation, given an Exceptional-
returning function.

Listing 13.15. Making Validation traversable

public static Exceptional<Validation<R>> Traverse<T, R>

 (this Validation<T> valT, Func<T, Exceptional<R>> f)

 => valT.Match(

 Invalid: errs => Exceptional(Invalid<R>(errs)),

 Valid: t => f(t).Map(Valid));

The base case is if the Validation is Invalid; that’s analogous to the empty list case. Here we just
create a value of the required output type, preserving the validation errors. If the Validation is
Valid, that means we should “traverse” the single element it contains, identified by t. We apply
the Exception-returning function f to it to get an Exceptional<R>, and then we Map the Valid

(321)

function on it, which will lift the inner value r into a Validation<R>, giving us the required output
type, Exceptional<Validation<R>>.

You can follow this scheme to define Traverse for the other one-or-no-value effects. Notice that
once you have Traverse, if you have, say, a Validation <Exceptional<T>> and want to reverse the
order of the effects, you could just use Traverse with the identity function.

In summary, Traverse is useful not just to handle lists of elevated values, but more generally
whenever you have stacked effects. As you encode your application’s requirements through
Option, Validation, and others, Traverse is one of the tools you can use to ensure that the types
don’t get the better of you.

(322)

13.3. Combining asynchrony and validation (or any other two
monadic effects)

Most enterprise applications are distributed and depend on a number of external systems, so
much if not most of your code may run in an asynchronous context. If you want to use constructs
like Option or Validation, soon enough you’ll be dealing with Task<Option<T>>,
Task<Validation<T>>, Validation<Task<T>>, and so on.

13.3.1. The problem of stacked monads

These nested types can be difficult to work with. When you work within one monad, such as
Option, everything is fine, because you can use Bind to compose several Option-returning
computations. But what if you have a function that returns an Option<Task<T>> and another
function of type T → Option<R>? How can you combine them? And how would you use an
Option<Task<T>> with a function of type T → Task<Option<R>>?

We can refer to this more generally as the problem of stacked monads. In order to illustrate this
problem and how it can be addressed, let’s revisit one of the examples from chapter 10. The
following listing shows a skeletal version of the controller that handles API requests to make a
transfer.

Listing 13.16. Skeleton of the MakeTransfer command handler

The preceding code will serve as an outline, and next you’ll see how to add asynchrony and
validation. I’m assuming that the dependencies (the functions to retrieve an account and save an
event) are injected in the constructor.

First, we’ll add a new dependency to perform validation on the MakeTransfer command. Its
signature will be

validate : MakeTransfer → Validation<MakeTransfer>

Next, we need to revise the signatures of the existing dependencies. When we retrieve the current
state of an account, that operation will hit the database. We want to make it asynchronous, so the
result type should be wrapped in a Task. Furthermore, errors may occur in connecting to the DB.
Fortunately, Task already captures this. Finally, there’s the possibility that the account doesn’t

(323)

exist—that is, no events were ever recorded for the given ID—so the result should also be
wrapped in an Option. The full signature will be

getAccount : Guid → Task<Option<AccountState>>

Saving and publishing an event should also be asynchronous, so that the signature will be

saveAndPublish : Event → Task

Finally, remember that Account.Debit will also return its result wrapped in a Validation:

Account.Debit : AccountState → MakeTransfer

 → Validation<(Event, AccountState)>

Now let’s write a skeleton of the command handler with all these effects in place:

public class MakeTransferController : Controller

{

 Func<MakeTransfer, Validation<MakeTransfer>> validate;

 Func<Guid, Task<Option<AccountState>>> getAccount;

 Func<Event, Task> saveAndPublish;

 public Task<IActionResult> MakeTransfer([FromBody] MakeTransfer command)

 {

 Task<Validation<AccountState>> outcome = // TODO...

 return outcome.Map(

 Faulted: ex => StatusCode(500, Errors.UnexpectedError),

 Completed: val => val.Match<IActionResult>(

 Invalid: errs => BadRequest(new { Errors = errs }),

 Valid: newState => Ok(new { Balance = newState.Balance })));

 }

}

So far we’ve just listed the dependencies with the new signatures, established that the main
workflow will return a Task<Validation<AccountState>>, and mapped its possible states to
appropriately populated HTTP responses. Now comes the real work: how do we put together the
functions we need to consume?

13.3.2. Reducing the number of effects

First, we’ll need a couple of adapters. Notice that getAccount returns an Option, meaning we
should cater for the case in which no account is found. What does it mean if there’s no account?
It means the command is incorrectly populated, so we can map None to a Validation with an
appropriate error. Hence, we can write an adapter function like this:

Func<Guid, Task<Option<AccountState>>> getAccount;

Func<Guid, Task<Validation<AccountState>>> GetAccount

 => id

 => getAccount(id)

 .Map(opt => opt.ToValidation(() => Errors.UnknownAccountId(id)));

ToValidation is a helper method that turns an Option<T> into a Validation<T>, using the inner value
from the Option in the Some case and using the provided function to create a Validation in the
Invalid state in the None case. This doesn’t solve all our problems, but at least now we’re only
dealing with two monads: Task and Validation.

Second, saveAndPublish returns a Task, which doesn’t have an inner value, so it won’t compose
well. Let’s write an adapter that will return a Task<Unit> instead:

(324)

Func<Event, Task> saveAndPublish;

Func<Event, Task<Unit>> SaveAndPublish

 => async e =>

 {

 await saveAndPublish(e);

 return Unit();

 };

Let’s look again at the functions we must compose in order to get our desired outcome:

validate : MakeTransfer → Validation<MakeTransfer>

GetAccount : Guid → Task<Validation<AccountState>>

Account.Debit : AccountState → MakeTransfer

 → Validation<(Event, AccountState)>

SaveAndPublish : Event → Task<Unit>

If we used Map the whole way through, we’d get a result type of
Validation<Task<Validation<Validation<Task<Unit>>>>>. We could use Bind to flatten the adjacent
Validations, but that would still leave us with a stack of four monads. We’d then have to use a
sophisticated combination of calls to Traverse to change the order of monads, and Bind to flatten
them. Honestly, I tried. It took me about half an hour to figure it out, and the result was very
cryptic, and not something you’d be keen to ever refactor!

We have to look for a better way. Ideally, we’d like to write something like this:

from cmd in validate(command)

from acc in GetAccount(cmd.DebitedAccountId)

from result in Account.Debit(acc, cmd)

from _ in SaveAndPublish(result.Event)

select result.NewState

We’d then have some underlying implementations of Select and SelectMany that figure out how to
combine the types together. Unfortunately, this can’t be achieved in a general-enough way: add
too many overloads of SelectMany, and this will cause overload resolution to fail. The good news
is that we can have a close approximation. You’ll see this next.

13.3.3. LINQ expressions with a monad stack

We can implement Bind and the LINQ query pattern for a specific monad stack—in this case,
Task<Validation<T>>.[6] This allows us to compose several functions that return a
Task<Validation<>> within a LINQ expression. With this in mind, we can adapt our existing
functions to this type by following these rules:

6

I won’t show the implementation, which is included in the code samples. This really is
library code, not code that a library user should worry about. You may also ask whether an
implementation is required for every stack of monads, and indeed this is the case, given the
pattern-based approach we’ve been following in the book.

If we have a Task<Validation<T>> (or a function that returns such a type), then there’s
nothing to do. That’s the monad we’re working in.
If we have a Validation<T>, we can use the Async function to lift it into a Task, obtaining a
Task<Validation<T>>.
If we have a Task<T>, we can map the Valid function onto it to again obtain
Task<Validation<T>>.

(325)

If we have a Validation<Task<T>>, we can call Traverse with the identity function to swap
the containers around.

So our previous query needs to be modified as follows:

from cmd in Async(validate(command))

from acc in GetAccount(cmd.DebitedAccountId)

from result in Async(Account.Debit(acc, cmd))

from _ in SaveAndPublish(result.Event).Map(Valid)

select result.NewState;

This will work, as long as the appropriate implementations of Select and SelectMany for
Task<Validation<T>> are defined. As you can see, the resulting code is still reasonably clean and
easy to understand and refactor. We just had to add a few calls to Async and Map(Valid) to make
the types line up. The complete implementation (barring the adapter functions) is as follows.

Listing 13.17. The command handler, refactored to include asynchrony and validation

public class MakeTransferController : Controller

{

 Func<MakeTransfer, Validation<MakeTransfer>> validate;

 Func<Guid, Task<Validation<AccountState>>> GetAccount;

 Func<Event, Task<Unit>> SaveAndPublish;

 public Task<IActionResult> MakeTransfer([FromBody] MakeTransfer command)

 {

 Task<Validation<AccountState>> outcome =

 from cmd in Async(validate(command))

 from acc in GetAccount(cmd.DebitedAccountId)

 from result in Async(Account.Debit(acc, cmd))

 from _ in SaveAndPublish(result.Event).Map(Valid)

 select result.NewState;

 return outcome.Map(

 Faulted: ex => StatusCode(500, Errors.UnexpectedError),

 Completed: val => val.Match<IActionResult>(

 Invalid: errs => BadRequest(new { Errors = errs }),

 Valid: newState => Ok(new { Balance = newState.Balance })));

 }

}

In summary, although monads are very nice and pleasant to work with in the context of a single
monadic type, things get more complicated when you need to combine several monadic effects.
[7] Keep this in mind, and limit the nesting of different monads to what you really need. For
instance, once we simplified things in the previous example by mapping Option to Validation, we
only had to deal with two stacked monads, not three. Similarly, if you have a Task<Try<T>>, you
can probably reduce it to a Task<T>, because Task can capture any exceptions raised when running
the Try. Finally, if you find yourself always using a stack of two monads, you can write a new
type that encapsulates both effects into that single type. For example, Task encapsulates both
asynchrony and error handling.

7

Note that this isn’t just the case in C#, but even in functional languages. Even in Haskell,
where monads are used everywhere, stacked monads are usually dealt with via rather clunky
“monad transformers.” A more promising approach is called “composable effects,” and it
has first-class support in a very niche functional language called Idris. It’s possible that
languages of the future won’t just have syntax optimized for monads, such as LINQ, but
also syntax optimized for monad stacks.

(326)

Summary

Task<T> represents a computation that will asynchronously deliver a T.
Tasks should be used whenever the underlying operation may have significant latency, such
as most I/O operations.
Task-returning functions can be composed with Map, Bind, and several other combinators to
specify error handling or multiple retries.
If Tasks are independent, they can be run in parallel. You can use Task as an applicative,
and providing several Tasks with Apply runs them in parallel.
If you have two monads, A and B, you may like to stack them up in values like A<B<T>>, to
combine the effects of each monad.
Traverse can be used to invert the order of monads in the stack.
Implementing the query pattern for such a stack allows you to combine As, Bs, and A<B<>>s
with relative ease.
Still, stacked monads tend to be cumbersome, so use them sparingly.

(327)

Chapter 14. Data streams and the Reactive
Extensions
This chapter covers

Using IObservable to represent data streams
Creating, transforming, and combining IObservables
Knowing when you should use IObservable

In chapter 13, you gained a good understanding of asynchronous values—values that are
received at some point in the future. What about a series of asynchronous values? For example,
say you have an event-sourced system like the one in chapter 10; how can you model the stream
of events that are produced and define downstream processing of those events? For example, say
you want to recompute an account’s balance with every transaction, and send a notification if it
becomes negative?

The IObservable interface provides an abstraction to represent such event streams. And not just
event streams, but more generally data streams, where the values in the stream could be, say,
stock quotes, byte chunks being read from a file, successive states of an entity, and so on. Really,
anything that constitutes a sequence of logically related values in time can be thought of as a data
stream.

In this chapter, you’ll learn what IObservables are, and how to use the Reactive Extensions (Rx)
to create, transform, and combine IObservables. We’ll also discuss what sort of scenarios benefit
from using IObservable.

Rx is a set of libraries for working with IObservables—much like LINQ provides utilities for
working with IEnumerables. Rx is a very rich framework, so thorough coverage is beyond the
scope of this chapter; instead, we’ll just look at some basic features and applications of
IObservable and at how it relates to other abstractions we’ve covered so far.

(328)

14.1. Representing data streams with IObservable

If you think of an array as a sequence of values in space (space in memory, that is), then you can
think of IObservable as a sequence of values in time:

With an IEnumerable, you can enumerate its values at your leisure.
With an IObservable, you can observe the values as they come.

Table 14.1 shows how IObservable relates to other abstractions.

Table 14.1. How IObservable compares with other abstractions

 Synchronous Asynchronous

Single value T Task<T>
Multiple values IEnumerable<T> IObservable<T>

IObservable is like an IEnumerable, in that it contains several values, and it’s like a Task, in that
values are delivered asynchronously. IObservable is therefore more general than both: you can
view IEnumerable as a special case of IObservable that produces all its values synchronously; you
can think of Task as a special case of IObservable that produces a single value.

14.1.1. A sequence of values in time

The easiest way to develop an intuition about IObservable is through marble diagrams, a few
examples of which are shown in figure 14.1. Marble diagrams represent the values in the stream.
Each IObservable is represented with an arrow, representing time, and marbles, representing
values that are produced by the IObservable.

Figure 14.1. Marble diagrams provide an intuitive way to understand IObservables.

(329)

The image illustrates that an IObservable can actually produce three different kinds of messages:

OnNext signals a new value, so if your IObservable represents a stream of events, OnNext will
be fired when an event is ready to be consumed. This is an IObservable’s most important
message, and often the only one you’ll be interested in.
OnCompleted signals that the IObservable is done and will signal no more values.
OnError signals that an error has occurred and provides the relevant Exception.

The IObservable contract

The IObservable contract specifies that an IObservable should produce messages according to the
following grammar:

OnNext* (OnCompleted|OnError)?

That is, an IObservable can produce an arbitrary number of T’s (OnNext), possibly followed by a
single value indicating either successful completion (OnCompleted) or an error (OnError).

This means that there are three possibilities in terms of completion. An IObservable can

Never complete
Complete normally, with a completion message
Complete abnormally, in which case it produces an Exception

An IObservable never produces any values after it’s completed, regardless of whether it
completes normally or with an error.

14.1.2. Subscribing to an IObservable

(330)

Observ-ables work in tandem with observ-ers. Simply put,

Observables produce values
Observers consume them

If you want to consume the messages produced by an IObservable, you can create an observer and
associate it with an IObservable via the Subscribe method. The simplest way to do this is by
providing a callback that will handle the values produced by the IObservable, like so:

So when I say that nums “produces” an int value, all I really mean is that it calls the given
function (in this case, Console.WriteLine) with the value. The result of the preceding code is that
whenever nums produces an int, it’s printed out.

I find the naming a bit confusing; you’d expect an IObservable to have an Observe method, but
instead it’s called Subscribe. Basically, you can think of the two as synonyms: an “observer” is a
subscriber, and in order to “observe” an observable, you subscribe to it.

What about the other types of messages an IObservable can produce? You can provide handlers
for those as well. For instance, the following listing shows a convenience method that attaches an
observer to an IObservable; this observer will simply print some diagnostic messages whenever
the IObservable signals. We’ll use this method later for debugging.

Listing 14.1. Subscribing to the messages produced by an IObservable

using static System.Console;

public static IDisposable Trace<T>

 (this IObservable<T> source, string name)

 => source.Subscribe(

 onNext: t => WriteLine($"{name} -> {t}"),

 onError: ex => WriteLine($"{name} ERROR: {ex.Message}"),

 onCompleted: () => WriteLine($"{name} END"));

Subscribe actually takes three handlers (all are optional arguments), to handle the different
messages that an IObservable<T> can produce. It should be clear why the handlers are optional: if
you don’t expect an IObservable to ever complete, there’s no point providing an onComplete
handler.

A more OO option for subscribing is to call Subscribe with an IObserver,[1] an interface that,
unsurprisingly, exposes OnNext, OnError, and OnCompleted methods.

1

This is the method defined on the IObservable interface. The overload that takes the
callbacks is an extension method.

Also notice that Subscribe returns an IDisposable (the subscription). By disposing it, you
unsubscribe.

(331)

In this section you’ve seen some of the basic concepts and terminology around IObservable. It’s a
lot to absorb, but don’t worry; things will become clearer as you see some examples. These are
the basic ideas to keep in mind:

Observables produce values; observers consume them.
You associate an observer with an observable by using Subscribe.
An observable produces a value by calling the observer’s OnNext handler.

(332)

14.2. Creating IObservables

You now know how to consume the data in a stream by subscribing to an IObservable. But how
do you get an IObservable in the first place? The IObservable and IObserver interfaces are included
in .NET Standard, but if you want to create or perform many other operations on IObservables,
you’ll typically use the Reactive Extensions (Rx) by installing the System.Reactive package.[2]

2

Rx includes several libraries. The main library, System.Reactive, bundles the packages you’ll
most commonly need: System.Reactive.Interfaces, System.Reactive.Core,
System.Reactive.Linq, and System.Reactive.PlatformServices. There are several other
packages that are useful in more specialized scenarios, such as if you’re using Windows
forms.

The recommended way to create IObservables is by using several dedicated methods included in
the static Observable, and we’ll explore them next. I recommend you follow along in the REPL
when possible.

14.2.1. Creating a timer

A timer can be modeled with an IObservable that signals at regular intervals. We can represent it
with a marble diagram as follows:

This is a good way to start experimenting with IObservables because it’s simple but does include
the element of time.

You create a timer with Observable.Interval.

Listing 14.2. Creating an IObservable that signals every second

using System.Reactive.Linq;

var oneSec = TimeSpan.FromSeconds(1);

IObservable<long> ticks = Observable.Interval(oneSec);

Here we define ticks as an IObservable that will begin signaling after one second, producing a
long counter value that increments every second, starting at 0. Notice I said “will begin”
signaling? The resulting IObservable is lazy, so unless there’s a subscriber, nothing will actually
be done. Why talk, if nobody’s listening?

If we want to see some tangible results, we need to subscribe to the IObservable. We can do this
with the Trace method defined earlier:

ticks.Trace("ticks");

At this point, you’ll start to see the following messages appear in the console, one second apart:

ticks -> 0

(333)

ticks -> 1

ticks -> 2

ticks -> 3

ticks -> 4

...

Because this IObservable never completes, you’ll have to reset the REPL to stop the noise—
sorry!

14.2.2. Using Subject to tell an IObservable when it should signal

Another way to create an IObservable is by instantiating a Subject, which is an IObservable that
you can imperatively tell to produce a value that it will in turn push to its observers. For
example, the following program turns inputs from the console into values signaled by a Subject.

Listing 14.3. Modeling user inputs as a stream

Every time the user types in some input, the code pushes that value to the Subject by calling its
OnNext method. When the user types “q”, the code exits the for loop and calls the Subject’s
OnCompleted method, signaling that the stream has ended. Here we’ve subscribed to the stream of
inputs using the Trace method defined in 14.1, so we’ll get a diagnostic message printed for each
user input.

An interaction with the program looks like this (user inputs in bold):

hello

inputs -> hello

world

inputs -> world

q

inputs END

14.2.3. Creating IObservables from callback-based subscriptions

If your system subscribes to an external data source, such as a message queue, event broker, or
publisher/subscriber, you can model that data source as an IObservable.

For example, Redis can be used as a publisher/subscriber, and the following listing shows how
you can use Observable.Create to create an IObservable from the callback-based Subscribe

(334)

methods that allows you to subscribe to messages published to Redis.

Listing 14.4. Creating an IObservable from messages published to Redis

The preceding method returns an IObservable that will produce the values received from Redis on
the given channel. You could use this as follows:

Avoid using Subject

Subject works imperatively (you tell a Subject when to fire), and this goes somewhat counter to
the reactive philosophy of Rx (you specify how to react to certain things when they happen).

For this reason, it’s recommended that you avoid Subjects whenever possible, and instead use
other methods, such as Observable.Create. For example, as an exercise, try to rewrite the code in
listing 14.3, using Observable.Create to create an IObservable of user inputs.

14.2.4. Creating IObservables from simpler structures

I said that IObservable<T> is more general than a value T, a Task<T>, or an IEnumerable<T>, so let’s
see how each of these can be “promoted” to an IObservable. This becomes useful if you want to
combine one of these less powerful structures with an IObservable.

(335)

Return allows you to lift a single value into an IObservable that looks like this:

That is, it immediately produces the value and then completes. Here’s an example:

IObservable<string> justHello = Observable.Return("hello");

justHello.Trace("justHello");

// prints: justHello -> hello

// justHello END

Return takes a value, T, and lifts it into an IObservable<T>. This is the first container where the
Return function is actually called Return!

Let’s see about creating an IObservable from a single asynchronous value—a Task. Here, we have
an IObservable that looks like this:

That is, after some time we’ll get a single value, immediately followed by the signal for
completion. In code, it looks like this:

Observable.FromAsync(() => Yahoo.GetRate("USDEUR"))

 .Trace("singleUsdEur");

// prints: singleUsdEur -> 0.92

// singleUsdEur END

Finally, an IObservable created from an IEnumerable looks like this:

That is, it immediately produces all the values in the IEnumerable, and completes:

IEnumerable<char> e = new[] { 'a', 'b', 'c' };

IObservable<char> chars = e.ToObservable();

chars.Trace("chars");

// prints: chars -> a

// chars -> b

// chars -> c

// chars END

You’ve now seen many—but not all—methods for creating IObservables. You may end up
creating IObservables in other ways; for example, in Windows application development you can
turn UI events such as mouse clicks into event streams by using Observable.FromEvent and
FromEventPattern.

Now that you know about creating and subscribing to IObservable, let’s move on to the most
fascinating area: transforming and combining different streams.

(336)

14.3. Transforming and combining data streams

The power of using streams comes from the many ways in which you can combine them and
define new streams based on existing ones. Rather than dealing with individual values in a
stream (like in most event-driven designs), you deal with the stream as a whole.

Rx offers a lot of functions (often called operators) to transform and combine IObservables in a
variety of ways. I’ll discuss the most commonly used ones, and add a few operators of my own.
You’ll recognize the typical traits of a functional API: purity and composability.

14.3.1. Stream transformations

You can create new observables by transforming an existing observable in some way. One of the
simplest operations is mapping. This is achieved with the Select method, which works—as with
any other “container”—by applying the given function to each element in the stream, as shown
in figure 14.2.

Figure 14.2. Select maps a function onto a stream.

Here’s some code that creates a timer and then maps a simple function on it:

var oneSec = TimeSpan.FromSeconds(1);

var ticks = Observable.Interval(oneSec);

ticks.Select(n => n * 10)

 .Trace("ticksX10");

We’re attaching an observer on the last line, with the Trace method, so the preceding code will
cause the following messages to be printed every second:

ticksX10 -> 0

ticksX10 -> 10

ticksX10 -> 20

ticksX10 -> 30

ticksX10 -> 40

...

Because Select follows the LINQ query pattern, we can write the same thing using LINQ:

from n in ticks select n * 10

Using Select, we can rewrite our simple program that checks exchange rates (first introduced in
listing 12.1) in terms of observables:

(337)

Here, inputs represents the stream of currency pairs entered by the user, and in rates we map
those pairs to the corresponding values retrieved from the Yahoo API. We’re subscribing to both
observables with the usual Trace method, so an interaction with this program could be as follows:

eurusd

inputs -> EURUSD

rates -> 1.0852

chfusd

inputs -> CHFUSD

rates -> 1.0114

Notice, however, that we’re calling Result to wait for the remote query in GetRate to complete. In
a real application, we wouldn’t want to block a thread, so how could we avoid that?

We saw that a Task can easily be promoted to an IObservable, so we could generate an IObservable
of IObservables. Sound familiar? Bind! We can use SelectMany instead of Select, which will
flatten the result into a single IObservable. We can therefore rewrite the definition of the rates
stream as follows:

var rates = inputs.SelectMany

 (pair => Observable.FromAsync(() => Yahoo.GetRate(pair)));

Observable.FromAsync promotes the Task returned by GetRate to an IObservable, and SelectMany
flattens all these IObservables into a single IObservable.

Because it’s always possible to promote a Task to an IObservable, an overload of SelectMany exists
that does just that (this is similar to how we overloaded Bind to work with an IEnumerable and an
Option-returning function in chapter 4). This means we can avoid explicitly calling FromAsync and
return a Task instead. Furthermore, we can use a LINQ query:

var rates =

 from pair in inputs

 from rate in Yahoo.GetRate(pair)

 select rate;

The program thus modified will work the same way as before, but without the blocking call to
Result.

IObservable also supports many of the other operations that are supported by IEnumerable, such as
filtering with Where, Take (takes the first n values), Skip, First, and so on.

14.3.2. Combining and partitioning streams

(338)

There are also many operators that allow you to combine two streams into a single one. For
example, Concat produces all the values of one IObservable, followed by all the values in another,
as shown in figure 14.3.

Figure 14.3. Concat waits for an IObservable to complete and then produces elements from the other IObservable.

For instance, in our exchange rate lookup, we have an observable called rates with the retrieved
rates. If we want an observable of all the messages the program should output to the console, this
must include the retrieved rates, but also an initial message prompting the user for some input.
We can lift this single message into an IObservable with Return and then use Concat to combine it
with the other messages:

IObservable<decimal> rates = //...

IObservable<string> outputs = Observable

 .Return("Enter a currency pair like 'EURUSD', or 'q' to quit")

 .Concat(rates.Select(Decimal.ToString));

In fact, the need to provide a starting value for an IObservable is so common that there’s a
dedicated function, StartWith. The preceding code is equivalent to this:

var outputs = rates.Select(Decimal.ToString)

 .StartWith("Enter a currency pair like 'EURUSD', or 'q' to quit");

Whereas Concat waits for the left IObservable to complete before producing values from the right
observable, Merge combines values from two IObservables without delay, as shown in figure 14.4.

Figure 14.4. Merge merges two IObservables into one.

For example, if you have a stream of valid values and one of error messages, you could combine
them with Merge as follows:

(339)

IObservable<decimal> rates = //...

IObservable<string> errors = //...

var outputs = rates.Select(Decimal.ToString)

 .Merge(errors);

Just as you might want to merge values from different streams, the opposite operation—
partitioning a stream according to some criterion—is also often useful. Figure 14.5 illustrates
this.

Figure 14.5. Partitioning an IObservable according to a predicate

This is one of many cases in which C# 7 tuple syntax facilitates working with IObservable
effectively. Partition is defined as follows:

public static (IObservable<T> Passed, IObservable<T> Failed)

 Partition<T>(this IObservable<T> ts, Func<T, bool> predicate)

 => (Passed: from t in ts where predicate(t) select t

 , Failed: from t in ts where !predicate(t) select t);

It can be used in client code like this:

var (evens, odds) = ticks.Partition(x => x % 2 == 0);

Partitioning an IObservable of values is roughly equivalent to an if when dealing with a single
value, so it’s useful when you have a stream of values that you want to process differently,
depending on some condition. For example, if you have a stream of messages and some criterion
for validation, you can partition the stream into two streams of valid and invalid messages, and
process them accordingly.

14.3.3. Error handling with IObservable

Error handling when working with IObservable works differently from what you might expect. In
most programs, an uncaught exception either causes the whole application to crash, or causes the
processing of a single message/request to fail, while subsequent requests work fine. To illustrate
how things work differently in Rx, consider this version of our program for looking up exchange
rates:

public static void Main()

{

 var inputs = new Subject<string>();

 var rates =

 from pair in inputs

 from rate in Yahoo.GetRate(pair)

 select rate;

(340)

 var outputs = from r in rates select r.ToString();

 using (inputs.Trace("inputs"))

 using (rates.Trace("rates"))

 using (outputs.Trace("outputs"))

 for (string input; (input = ReadLine().ToUpper()) != "Q";)

 inputs.OnNext(input);

}

The program captures three streams, each dependent on another (outputs is defined in terms of
rates, and rates is defined in terms of inputs, as shown in figure 14.6), and we’re printing
diagnostic messages for all of them with Trace.

Figure 14.6. Simple dataflow between three IObservables

Now look what happens if you break the program by passing an invalid currency pair:

eurusd

inputs -> EURUSD

rates -> 1.0852

outputs -> 1.0852

chfusd

inputs -> CHFUSD

rates -> 1.0114

outputs -> 1.0114

xxx

inputs -> XXX

rates ERROR: Input string was not in a correct format.

outputs ERROR: Input string was not in a correct format.

chfusd

inputs -> CHFUSD

eurusd

inputs -> EURUSD

What this shows is that once rates errors, it never signals again (as specified in the IObservable
contract). As a result, everything downstream is also “dead.” But IObservables upstream of the
failed one are fine: inputs is still signaling, as would any other IObservables defined in terms of
inputs.

To prevent your system from going into such a state, where a “branch” of the dataflow dies,
while the remaining graph keeps functioning, you can use the techniques you learned for
functional error handling.

To do this, you can use a helper function I’ve defined in the LaYumba.Functional library, which
allows you to safely apply a Task-returning function to each element in a stream. The result will
be a pair of streams: a stream of successfully computed values, and a stream of exceptions.

Listing 14.5. Safely performing a Task and returning two streams

(341)

For each T in the given stream, we apply the Task-returning function f. We then use the binary
overload of Map defined in chapter 13 to convert each resulting Task<R> to a Task<Exceptional<R>>.
This is where we gain safety: instead of an inner value R that will throw an exception when it’s
accessed, we have an Exceptional<R> in the appropriate state. SelectMany flattens away the Tasks in
the stream and returns a stream of Exceptionals. We can then partition this in successes and
exceptions.

With this in place, we can refactor our program to handle errors more gracefully:

var (rates, errors) = inputs.Safely(Yahoo.GetRate);

14.3.4. Putting it all together

Let’s showcase the various techniques you’ve learned in this section by refactoring the exchange
rates lookup program to safely handle errors, and without the debug information.

Listing 14.6. The program refactored to safely handle errors

public static void Main()

{

 var inputs = new Subject<string>();

(342)

 var (rates, errors) = inputs.Safely(Yahoo.GetRate);

 var outputs = rates

 .Select(Decimal.ToString)

 .Merge(errors.Select(ex => ex.Message))

 .StartWith("Enter a currency pair like 'EURUSD', or 'q' to quit");

 using (outputs.Subscribe(WriteLine))

 for (string input; (input = ReadLine().ToUpper()) != "Q";)

 inputs.OnNext(input);

}

The dataflow diagram in figure 14.7 shows the various IObservables involved, and how they
depend on one another.

Figure 14.7. Dataflow with a separate branch for handling errors

Notice how Safely allows us to create two branches, each of which can be processed
independently until a uniform representation for both cases is obtained and they can be merged.
Also take note of the three parts of a program that uses IObservables:

1. Set up the data sources— In our case: inputs, which requires a Subject; and the single
value “Enter...”

2. Process the data— This is where functions like Select, Merge, and so on are used.
3. Consume the results— Observers consume the most downstream IObservables; in this

case: outputs.

(343)

14.4. Implementing logic that spans multiple events

So far I’ve mostly aimed at familiarizing you with IObservables and the many operators that can
be used with them. For this, I’ve used familiar examples like the exchange rates lookup. After
all, given that you can promote any value T, Task<T>, or IEnumerable<T> to an IObservable<T>, you
could pretty much write all of your code in terms of IObservables! But should you?

The answer, of course, is “probably not.” The area in which IObservable and Rx really shine is
when you can use them to write stateful programs without any explicit state manipulation. By
“stateful programs,” I mean programs in which events aren’t treated independently; past events
influence how new events are treated. In this section, you’ll see a few such examples.

14.4.1. Detecting sequences of pressed keys

At some point, you’ve probably written an event handler that listens to a user’s keypresses and
performs some actions based on what key and key modifiers were pressed. A callback-based
approach is satisfactory for many cases, but what if you want to listen to a specific sequence of
keypresses? For example, say you want to implement some behavior when the user presses the
combination Alt-K-B.

In this case, pressing Alt-B should lead to different behavior, based on whether it was shortly
preceded by the leading Alt-K, so keypresses can’t be treated independently. If you have a
callback-based mechanism that deals with single keypressed events, you effectively need to set
in motion a state machine when the user presses Alt-K, and then wait for the possible Alt-B that
will follow, reverting to the previous state if no Alt-B is received in time. It’s actually pretty
complicated!

With IObservable, this can be solved much more elegantly. Let’s assume that we have a stream of
keypress events, keys. We’re looking for two events—Alt-K and Alt-B—that happen on that
same stream in quick succession. In order to do this, we need to explore how to combine a
stream with itself. Consider the following diagram:

It’s important to understand this diagram. The expression keys.Select(_ => keys) yields a new
IObservable that maps each value produced by keys to keys itself. So when keys produces its first
value, a, this new IObservable produces an IObservable that has all following values in keys. When

(344)

keys produces its second value, b, the new IObservable produces another IObservable that has all
the values that follow b, and so on.[3]

3

Imagine what keys.Select(_ => keys) would look like if keys were an IEnumerable: for each
value, you’d be taking the whole IEnumerable, so in the end you’d have an IEnumerable
containing n replicas of keys (n being the length of keys). With IObservable, the behavior is
different because of the element of time, so when you say “give me keys,” what you really
get is “all values keys will produce in the future.”

Looking at the types can also help clarify this:

keys : IObservable<KeyInfo>

_ => keys : KeyInfo → IObservable<KeyInfo>

keys.Select(_ => keys) : IObservable<IObservable<KeyInfo>>

If we use SelectMany instead, all these values are flattened into a single stream:

Of course, if we’re looking for two consecutive keypresses, we don’t need all values that follow
an item, but just the next one. So instead of mapping each value to the whole IObservable, let’s
reduce it to the first item with Take:

We’re getting close. Now, let’s make the following changes:

Instead of ignoring the current value, pair it with the following value.
Use SelectMany to obtain a single IObservable.
Use LINQ syntax.

The resulting expression pairs each value in an IObservable with the previously emitted value:

(345)

This is a pretty useful function in its own right, and I’ll call it PairWithPrevious. We’ll use it later.

But for this particular scenario, we only want pairs to be created if they’re sufficiently close in
time. This can be achieved easily: in addition to taking only the next value with Take(1), we only
take values within a timespan, using an overload of Take that takes a TimeSpan. The solution is
shown in the following listing.

Listing 14.7. Detecting when the user presses the Alt-K-B key sequence

As you can see, the solution is simple and elegant, and you can apply this approach to recognize
more complex patterns within sequences of events—all without explicitly keeping track of state
and introducing side effects!

You’ve probably also realized that coming up with such a solution isn’t necessarily easy. It takes
a while to get familiar with IObservable and its many operators, and develop an understanding of
how to use them.

14.4.2. Reacting to multiple event sources

Imagine we have a bank account denominated in euros, and we’d like to keep track of its value in
US dollars. Both changes in balance and changes in the exchange rate cause the dollar balance to
change. To react to changes from different streams, we could use CombineLatest, which takes the
latest values from two observables, whenever one of them signals, as shown in figure 14.8.

(346)

Figure 14.8. CombineLatest signals whenever one of two IObservables signals.

Its usage would be as follows:

IObservable<decimal> balance = //...

IObservable<decimal> eurUsdRate = //...

var balanceInUsd = balance.CombineLatest(eurUsdRate

 , (bal, rate) => bal * rate);

This works, but it doesn’t take into account the fact that the exchange rate is much more volatile
than the account balance. In fact, if exchange rates come from the FX market, there may well be
dozens or hundreds of tiny movements every second! Surely this level of detail isn’t required for
a private client who wants to keep an eye on their finances. Reacting to each change in exchange
rate would flood the client with unwanted notifications.

This is an example of an IObservable producing too much data (see the sidebar on backpressure).
For this, we can use Sample, an operator that takes an IObservable that acts as a data source, and
another IObservable that signals when values should be produced. Sample is illustrated in figure
14.9.

Figure 14.9. Sample produces the values from a “source” stream whenever a “sampler” stream signals.

In this scenario, we can create an IObservable that signals at 10 minute intervals, and use it to
sample the stream of exchange rates.

Listing 14.8. Sampling a value from an IObservable every 10 minutes

IObservable<decimal> balance = //...

IObservable<decimal> eurUsdRate = //...

(347)

var tenMins = TimeStamp.FromMinutes(10);

var sampler = Observable.Interval(tenMins);

var eurUsdSampled = eurUsdRate.Sample(sampler);

var balanceInUsd = balance.CombineLatest(eurUsdSampled

 , (bal, rate) => bal * rate);

Both CombineLatest and Sample are cases in which our logic spans multiple events, and Rx allows
us to do so without explicitly keeping any state.

Backpressure: when an IObservable produces data too quickly

When you iterate over the items in an IEnumerable, you’re “pulling” or requesting items, so you
can process them at your own pace. With IObservable, items are “pushed” to you (the consuming
code). If an IObservable produces values more rapidly than they can be consumed by the
subscribed observers, this can cause excessive backpressure, causing strain to your system.

To ease backpressure, Rx provides several operators:

Throttle

Sample

Buffer

Window

Debounce

Each has a different behavior and several overloads, so we won’t discuss them in detail. The
point is that with these operators, you can easily and declaratively implement logic like, “I want
to consume items in batches of 10 at a time,” or “if a cluster of values come in quick succession,
I only want to consume the last one.” Implementing such logic in a callback-based solution,
where each value is received independently, would require you to manually keep some state.

14.4.3. Notifying when an account becomes overdrawn

For a final, more business-oriented example, imagine that, in the context of the BOC application,
we consume a stream of all transactions that affect bank accounts, and we want to send clients a
notification if their account’s balance becomes negative.

An account’s balance is the sum of all the transactions that have affected it, so at any point, given
a list of past Transactions for an account, you could compute its current balance using Aggregate.
There is an Aggregate function for IObservable; it waits for an IObservable to complete, and
aggregates all the values it produces into a single value.

But this isn’t what we need: we don’t want to wait for the sequence to complete, but to know the
balance with every Transaction received. For this, we can use Scan (see figure 14.10), which is
similar to Aggregate but aggregates all previous values with every new value that is produced.

Figure 14.10. Scan aggregates all values produced so far.

(348)

As a result, we can effectively use Scan to keep state. Given an IObservable of Transactions
affecting a bank account, we can use Scan to add up the amounts of all past transactions as they
happen, obtaining an IObservable that signals with the new balance whenever the account balance
changes:

IObservable<Transaction> transactions = //... decimal initialBalance = 0;

IObservable<decimal> balance = transactions.Scan(initialBalance

 , (bal, trans) => bal + trans.Amount);

Now that we have a stream of values representing an account’s current balance, we need to
single out what changes in balance cause the account to “dip into the red,” going from positive to
negative.

For this, we need to look at changes in the balance, and we can do this with PairWithPrevious,
which signals the current value, together with the previously emitted value. We’ve discussed this
before, but here it is again for reference:

// ----1-------2---------3--------4------>

//

// PairWithPrevious

//

// ------------(1,2)-----(2,3)----(3,4)-->

//

public static IObservable<(T Previous, T Current)>

 PairWithPrevious<T>(this IObservable<T> source)

 => from first in source

 from second in source.Take(1)

 select (Previous: first, Current: second);

This is one of many examples of custom operations that can be defined in terms of existing
operations. It’s also an example of how you can use ASCII marble diagrams to document your
code.

We can now use this to signal when an account dips into the red as follows:

IObservable<Unit> dipsIntoTheRed =

 from bal in balance.PairWithPrevious()

 where bal.Previous >= 0

 && bal.Current < 0

 select Unit();

Now let’s make things a bit closer to the real world. If your system receives a stream of
transactions, this will probably include transactions for all accounts. Therefore, we must group
them by account ID in order to correctly compute the balance. GroupBy works for IObservable
similarly to how it does for IEnumerable, but it returns a stream of streams.

GroupBy(i =< i % 2)

(349)

Let’s rewrite the code, assuming an initial stream of transactions for all accounts.

Listing 14.9. Signalling whenever an account becomes overdrawn

Now we’re starting with a stream of Transactions for all accounts, and we end up with a stream
of Guids that will signal whenever an account dips into the red, with the Guid identifying the
offending account. Notice how this program is effectively keeping track of the balances of all
accounts, without the need for us to do any explicit state manipulation.

(350)

14.5. When should you use IObservable?

In this chapter, you’ve seen how you can use IObservable to represent data streams, and Rx to
create and manipulate IObservables. There are many details and features of Rx that we haven’t
discussed at all,[4] but we’ve still covered enough ground for you to start using IObservables and
to further explore the features of Rx as needed.

4

To give you an idea of what was not covered, there are many more operators along with
important implementation details of Rx: schedulers (which determine how calls to observers
are dispatched), hot vs. cold observables (not all observables are lazy), and Subjects with
different behaviors, for example.

As you’ve seen, having an abstraction that captures a data stream enables you to detect patterns
and specify logic that spans across multiple events, within the same stream or across different
streams. This is where I’d recommend using IObservable. The corollary is that, if your events can
be handled independently, then you probably shouldn’t use IObservables, because using them will
probably reduce the readability of your code.

A very important thing to keep in mind is that because OnNext has no return value, an IObservable
can only push data downstream, and never receives any data back. Hence, IObservables are best
combined into one-directional data flows. For instance, if you read events from a queue and
write some data into a DB as a result, IObservable can be a good fit. Likewise if you have a server
that communicates with web clients via WebSockets, where messages are exchanged between
client and server in a fire-and-forget fashion. On the other hand, IObservables are not well-suited
to a request-response model such as HTTP. You could model the received requests as a stream
and compute a stream of responses, but you’d then have no easy way to tie these responses back
to the original requests.

Finally, if you have complex synchronization patterns that can’t be captured with the operators in
Rx, and you need more fine-grained control over how messages are sequenced and processed,
you may find the building blocks in the System.DataFlow namespace (based on in-memory queues)
more appropriate.

(351)

Summary

IObservable<T> represents a stream of Ts: a sequence of values in time.
An IObservable produces messages according to the grammar OnNext*
(OnCompleted|OnError)?.
Writing a program with IObservables involves three steps:

Create IObservables using the methods in System.Reactive.Linq.Observable.
Transform and combine IObservables using the operators in Rx, or other operators
you may define.
Subscribe to and consume the values produced by the IObservable.
Associate an observer to an IObservable with Subscribe.
Remove an observer by disposing of the subscription returned by Subscribe.
Separate side effects (in observers) from logic (in stream transformations).

When deciding on whether to use IObservable, consider the following:

IObservable allows you to specify logic that spans multiple events.
IObservable is good for modeling unidirectional data flows, not request-response.

(352)

Chapter 15. An introduction to message-passing
concurrency
This chapter covers

Why shared mutable state is sometimes required
Understanding message-passing concurrency
Programming with agents in C#
Hiding agent-based implementations behind conventional APIs

Every seasoned developer has some first-hand experience of how difficult it can be to deal with
problems such as deadlocks and race conditions. These are the hard problems that can arise in
concurrent programs that involve shared mutable state (“shared,” that is, between processes that
execute concurrently).

This is why, throughout this book, you’ve seen many examples of how to solve problems without
making recourse to shared mutable state. Indeed, my recommendation is to avoid shared mutable
state whenever possible, and FP provides an excellent paradigm for doing so.

In this chapter, you’ll see why it’s not always possible to avoid shared mutable state, and what
strategies there are to synchronize access to shared mutable state. We’ll then concentrate on one
of these strategies: agent-based concurrency, a style of concurrent programming that relies on
message-passing between agents that “own” some state that they access in a single-threaded
way. Programming with agents is popular with F# programmers, but you’ll see that it’s perfectly
doable in C#.

(353)

15.1. The need for shared mutable state

It’s generally possible to avoid shared mutable state when designing parallel algorithms. For
instance, if you have a computationally intensive problem that you’d like to parallelize, you can
usually break the data set or the tasks down in such a way that several threads compute an
intermediate result independently. Hence, these threads can do their work independently, without
the need to share any state among themselves. Finally, another thread may compute the final
result by combining all the intermediate results.

The problem, however, is that avoiding shared mutable state isn’t always possible. Although it
can generally be achieved in the case of parallel computations, it’s much more difficult if the
source of concurrency is multithreading. For example, imagine a multithreaded application, such
as a server application handling requests on multiple threads, that needs to do the following:

Keep an application-wide counter, so that unique, sequential account numbers can be
generated
Cache some resources in memory to improve efficiency
Represent real-world entities, like items for sale, trades, contracts, and so on, ensuring that
you don’t sell the same (unique, real-world) item twice, just because two concurrent
requests to buy it have been received

In such scenarios, it’s essentially a requirement to share mutable state between the many threads
that the server application uses to more efficiently handle requests. To prevent concurrent access
from leading to data inconsistencies, you need to ensure the state can’t be accessed (or, at least,
updated) concurrently by different threads. That is, you need to synchronize access to shared
mutable state.

In mainstream programming, this synchronization is usually achieved using locks. Locks define
critical sections of the code that can only be entered by one thread at a time. When one thread
enters a critical section, it blocks other threads from entering it.

Functional programmers tend to avoid using locks and resort instead to alternative techniques:

Compare-and-swap (CAS)—CAS allows you to atomically read and update a single value;
this can be done in C# using the Interlocked.CompareExchange methods.
Software transactional memory (STM)—STM allows you to update mutable state within
transactions, which offers some interesting guarantees about how these updates take place:

Each thread performs a transaction in isolation; that is, it sees a view of the program
state that is unaffected by transactions that occur concurrently on other threads.
Transactions are then committed atomically; that is, either all changes succeed, or
none.[1]

1

In fact, there are several different strategies for implementing STM, with
different characteristics. Some implementations also enforce consistency,
meaning that it’s possible to enforce invariants that a transaction can’t violate.
Do these properties—atomicity, consistency, isolation—sound familiar? That’s
because they are three of the ACID properties guaranteed by many databases—

(354)

the last one being durability, which of course does not apply to STM, which
applies to data in memory.

If a transaction fails because another, concurrent transaction has modified the data, it
will be retried with a fresh view of the data.

Message-passing concurrency— The idea of this approach is that you set up lightweight
processes that have exclusive ownership of mutable state. Communication between
processes is via message-passing, and processes handle messages sequentially, hence
preventing concurrent access to their state. There are two main embodiments of this
approach:

The actor model— This is most famously implemented at Ericsson in conjunction
with the Erlang language (but implementations for other languages, including C#,
abound), in which processes are called “actors,” and they can be distributed across
different processes and machines.
Agent-based concurrency— This is inspired by the actor model, but it’s much
simpler, because processes, called agents, only exist within one application.

CAS only allows you to deal with a single value, so it only provides an effective solution for a
very limited number of scenarios. STM is an important paradigm for in-process concurrency, and
it’s particularly popular among Clojure and Haskell developers because these languages come
with a compelling and battle-tested implementation of STM. Unfortunately, no comparable
implementation of STM exists for C#.

For these reasons, I’ll concentrate on message-passing concurrency in the rest of this chapter,
and especially agent-based concurrency. You’ll later see how agents and actors differ in more
detail. Let’s begin by looking at message-passing concurrency as a programming model.

(355)

15.2. Understanding message-passing concurrency

You can think of an agent (or actor; the fundamental idea is the same) as a process that has
exclusive ownership of some mutable state. Communication between actors is via message
passing, so that the state can never be accessed from outside of the actor. Furthermore, incoming
messages are processed sequentially, so that concurrent state updates can never take place.

Figure 15.1 illustrates an agent: a process that runs in a loop. It has an inbox, in which messages
are queued, and it has some state. When a message is dequeued and processed, the agent
typically does some of the following:

Perform side effects
Send messages to other agents
Create other agents
Compute its new state

Figure 15.1. An agent consists of a message inbox and a processing loop.

The new state will be used as the current state at the next iteration, when the following message
is processed.

Let’s begin with an idealized, almost pseudo-code implementation of an agent, as I’ve just
described. Look at this code in detail and see how each part corresponds to what’s depicted in
figure 15.1.

Listing 15.1. Idealized implementation of an agent

(356)

There are several interesting things to point out here. First, notice that there are only two public
members. So only two interactions with an agent are allowed:

You can create (or start) an agent.
You can tell it a message, which simply enqueues the message in the agent’s inbox.

More complex interactions can be defined from these primitive operations.

Let’s now look at the processing loop, encoded in the Loop function. This dequeues the first
message from the inbox (or waits until a message becomes available) and processes it using the
agent’s processing function and its current state. It thus obtains the agent’s new state, which will
be used in the next execution of the loop.

Notice that the implementation is side-effect free—apart from any side effects that may occur
when calling the given processing function. The way changes in state are captured is by always
passing the state as an argument to the Loop function (a technique you already saw in chapter 12).

Notice also that this implementation assumes that State must be an immutable type; otherwise, it
could be shared by the process function and updated arbitrarily outside of the scope of the agent’s
processing loop. As a result, the state only “appears” to be mutable because a new version of the
state is used with each invocation of Loop.

Finally, take a moment to look at the signature for the constructor. Does it remind you of
anything? Compare it with Enumerable.Aggregate—can you see that it’s essentially the same? The
current state of an agent is the result of reducing all the messages it’s received so far, using the
initial state as an accumulator value, and the processing function as a reducer. It’s a fold in time
over the stream of messages received by the agent.

This implementation is elegant, and it would work well in a language with tail-call elimination,
but not in C#, so we’ll need to make some changes for a stack-safe implementation. Furthermore,
we can also dispense with many of the low-level details by using existing functionality in .NET.
We’ll look at this next.

(357)

15.2.1. Implementing agents in C#

.NET has an implementation of agents called MailboxProcessor, but it was designed for use from
F# and is very awkward to use from C#. And although the preceding implementation is useful
for understanding the idea, it’s not optimal. Instead, in the coming examples I’ll use the
following, more practical implementation of an agent, which is included in LaYumba.Functional.

Listing 15.2. Implementation of an agent that builds upon Dataflow.ActionBlock

Here I’ve replaced the recursive call (which could lead to stack overflow) with a single mutable
variable state that keeps track of the agent’s state and is reassigned as each message is
processed. Although this is a side effect, messages are processed sequentially, therefore
preventing concurrent writes.

I’ve also dispensed with the details of managing the queue and process by using ActionBlock, one
of the building blocks in .NET’s Dataflow library. An ActionBlock contains a buffer (by default,
unbounded in size) that will act as the agent’s inbox, and that only allows a fixed number of
threads to enter the block (by default, a single thread), ensuring messages are processed
sequentially.

State should still be an immutable type (otherwise, as previously pointed out, it could be shared
by the process function and mutated outside the scope of the ActionBlock). If this is observed, the
code is thread-safe.

From the point of view of the client code, nothing has changed: we still only have two public
members with the same signatures as before. The reason for the Agent<Msg> interface is twofold:

(358)

From the point of view of the client code consuming an agent, you can only tell it
messages, so by using the interface we avoid exposing the type parameter for the state.
After all, the type of the state is an implementation detail of the agent.
You can envisage other implementations, such as stateless agents, or agents that persist
their state.

Finally, here are some convenience methods for easily creating agents:

public static class Agent

{

 public static Agent<Msg> Start<State, Msg>

 (State initialState

 , Func<State, Msg, State> process)

 => new StatefulAgent<State, Msg>(initialState, process);

 public static Agent<Msg> Start<Msg>(Action<Msg> action)

 => new StatelessAgent<Msg>(action);

}

The first overload simply creates an agent with the given arguments. The second takes an action
and is used to create a stateless agent: an agent that processes messages sequentially but doesn’t
keep any state. (The implementation is trivial, as it just creates an ActionBlock with the given
Action.) We can also define agents with an asynchronous processing function/action; I’ve omitted
the overloads for brevity, but the full implementation is in the code samples. Next, we’ll get
started using agents.

15.2.2. Getting started with agents

Let’s look at some simple examples of using agents. We’ll build a couple of simple agents that
interact as shown in figure 15.2.

Figure 15.2. Simple interaction between agents by exchanging messages

We’ll start with a really simple, stateless agent that takes a message of type string and just prints
it out. You can follow along in the REPL:

Agent<string> logger = Agent.Start((string msg) => WriteLine(msg));

logger.Tell("Agent X");

// prints: Agent X

(359)

Next, let’s define the ping and pong agents that interact with the logger and with each other:

Agent<string> ping, pong = null;

ping = Agent.Start((string msg) =>

{

 if (msg == "STOP") return;

 logger.Tell($"Received '{msg}'; Sending 'PING'");

 Task.Delay(500).Wait();

 pong.Tell("PING");

});

pong = Agent.Start(0, (int count, string msg) =>

{

 int newCount = count + 1;

 string nextMsg = (newCount < 5) ? "PONG" : "STOP";

 logger.Tell($"Received '{msg}' #{newCount}; Sending '{nextMsg}'");

 Task.Delay(500).Wait();

 ping.Tell(nextMsg);

 return newCount;

});

ping.Tell("START");

Here, we define two additional agents. ping is stateless; it sends a message to the logger agent
and a “PING” message to the pong agent, unless the message it’s told is “STOP”, in which case it
does nothing. It’s quite common for an agent to have different behavior depending on the
message; that is, to interpret the message as a command.

Now let’s see a stateful agent: pong. The implementation is quite similar to ping: it sends
“PONG” to ping, but it also keeps a counter as state that is incremented with every message, so
after five messages it can send a “STOP” message instead.

The whole ping-pong is set in motion when we send the initial “START” message to ping on the
last line. Running the program causes the following to be printed:

Received 'START'; Sending 'PING'

Received 'PING' #1; Sending 'PONG'

Received 'PONG'; Sending 'PING'

Received 'PING' #2; Sending 'PONG'

Received 'PONG'; Sending 'PING'

Received 'PING' #3; Sending 'PONG'

Received 'PONG'; Sending 'PING'

Received 'PING' #4; Sending 'PONG'

Received 'PONG'; Sending 'PING'

Received 'PING' #5; Sending 'STOP'

Now that you’ve seen some simple agents interact, it’s time to move on to something closer to
real-world requirements.

15.2.3. Using agents to handle concurrent requests

Let’s go back to the scenario of a service that provides exchange rates. The service should
retrieve rates from the Yahoo API and cache them. In our previous implementation, the
interaction was via the command line, so that requests necessarily came in one by one.

Let’s change that. Let’s imagine that the service is part of a larger system, and that other
components may request rates via a message broker, as illustrated in figure 15.3.

Figure 15.3. A system in which several requests may be received concurrently

(360)

Components communicate with each other by sending messages via the message broker. To
communicate with the currency lookup service, the following messages are defined:

We’ll assume that the message broker is multithreaded; that is, our service may receive multiple
requests on different threads at exactly the same time.

In this case, sharing state between threads is a requirement: if we had a different cache for every
thread, that would be suboptimal. So we need to synchronize write access to the cache, ensuring
that only a single thread can write values to the cache at any given time.

Next, we’ll see how we can use agents to achieve this. First, we’ll need a bit of setup code,
defining the interaction with the message broker. This is shown in the following listing. Note that
the code isn’t specific to any particular message broker; we just need to be able to subscribe to it
to receive requests, and to use it to send responses. (The code samples include an implementation
of MessageBroker that uses Redis as its underlying transport.)

(361)

Listing 15.3. Setting up the handling of requests received from the message broker

Starting at the bottom, we subscribe to receive requests, providing a callback to handle the
request. This callback (which will be called on multiple threads) simply passes the request to the
processing agent, which is defined on the previous line. Hence, although requests are received on
multiple threads, they’ll be immediately queued up in the processing agent’s inbox and processed
sequentially.

Does this mean that processing is now single-threaded, and we lose any benefit of
multithreading? Not necessarily! If the processing agent did all the processing, that would indeed
be the case. Instead, let’s take a more granular approach: we can have an agent for each currency
pair in charge of fetching and storing the rate for its particular pair. The request-processing agent
will just be in charge of managing these per-currency-pair agents and delegating the work to
them, as in figure 15.4.

Figure 15.4. Breaking up the work between agents that can run concurrently

(362)

Let’s look at the definitions of the agents. We’ll start with the higher level request-processing
agent in charge of creating and delegating work to per-currency-pair agents.

Listing 15.4. A coordinating agent routes requests to a per-currency-pair agent

As you can see, the request-processing agent holds not a cache of values, but of agents—one for
each currency pair. It starts those agents as needed and forwards the requests to them.

The benefit of this solution is that requests for one currency, say GBPUSD, won’t impact
requests for another, say EURUSD. On the other hand, if you get several requests for GBPUSD
at the same time, only one remote request will be made to fetch that rate, while other requests are
queued.

Finally, here’s the definition of the agent that manages the rate for a single currency pair.

Listing 15.5. An agent that manages lookup and storage of an FX rate for a currency pair

(363)

This agent’s state is the rate for a single pair wrapped in an Option, because when it’s first created
the rate isn’t available yet. It decides whether a remote lookup is required, so you could easily
improve this to fetch the rate if the cached value is expired.

To keep the example simple, I’ve avoided the question of expiry, as well as error handling. I’m
also assuming that sending the request to the message broker is a fire-and-forget operation with
minimal latency, so that it’s OK to have a single agent performing it.

The main point of the example is that using agents, with their sequential processing of messages,
can be quite efficient. It does, however, require a mental shift, both from the functional approach
we’ve been pursuing in this book, and from the traditional approach of using locks.

15.2.4. Agents vs. actors

Agents and actors are closely related. In both cases, a single thread processes messages
sequentially and communicates with other actors/agents by sending them messages. There are
also important differences:

Agents run within a single process, whereas actors are designed for distributed systems. In
the examples we’ve looked at so far, a reference to an agent refers to a specific instance in
the current process. References to actors, on the other hand, are location-transparent; that
is, when you have a reference to an actor, that actor may be running in the same process or
on another process, possibly on a remote machine. So a reference to an agent is a pointer,
whereas a reference to an actor is an ID that the actor model implementation will use to
route messages across processes as appropriate.
Most implementations of the actor model cater for error handling through supervisor
actors that monitor a supervised actor and take action when it faults. This allows us to
nicely separate happy-path logic from error handling and makes it possible to create very
robust systems. There’s no counterpart of this with agents.
An agent’s state should be immutable and never shared outside the scope of the agent. In
our implementation, however, there’s nothing stopping an inexperienced developer from
creating an agent whose state is mutable, and from passing that mutable state to other
functions, thus allowing that state to be changed from outside the scope of the agent. With
actors, messages are serialized, so this should never occur.

As you can see, although the fundamental idea behind agents and actors is the same, the actor
model is richer and more complex. You should only consider using the actor model if you
require coordination of concurrent operations across different applications or machines;
otherwise, the operational and setup cost would be unjustified, and you should rely on agents
instead.

(364)

Although I was able to implement an actor with just a few lines of code, implementing the actor
model is much more complex. So if you want to use actors, you’ll probably use one of several
implementations of the actor model for .NET:

Orleans (https://dotnetfoundation.org/orleans) is Microsoft’s take on the actor model. It
has a distinctly object-oriented feel. The underlying philosophy is that less experienced
developers can interact with actors (called “grains”) as though they were local objects,
without being exposed to any additional complexities specific to the actor model. Orleans
takes care of managing the grains’ lifecycle, meaning that their state is kept in memory or
persisted to storage automatically. Persistence can be to a variety of media, including SQL
Server and cloud storage on Azure.
Akka.NET (http://getakka.net/) is a community-driven port of the Akka framework popular
with Scala developers. It predates Orleans and is much more explicit about its message-
driven nature, so the barrier to entry is higher. A variety of options are available for
message transport and persistence of the actors’ state.
echo (https://github.com/louthy/echo-process) is the implementation that stays closest to
Erlang. It’s the most lightweight option, both in terms of syntax and configuration: you can
create an actor (called a “process”) with a function, like we did with agents, or you can use
an interface-based approach (which reads more naturally if you need to handle different
kinds of messages). Message transport across application domains and persistence are
done with Redis only, out of the box, but you can implement adapters to target a different
infrastructure.

All these actor model implementations differ both in terminology and in important technical
details, so it’s difficult to offer a description of the actor model without being somewhat specific
to one implementation. This is one of the reasons why I’ve opted to illustrate the fundamental
ideas of message-passing concurrency with a simple implementation of agents. You can carry
these principles over to actor-based programming, but you’ll need to learn other principles, such
as error handling with supervisors, and the guarantees for message delivery offered by the
specific implementation you’re using.

(365)

https://dotnetfoundation.org/orleans
http://getakka.net/
https://github.com/louthy/echo-process

15.3. Functional APIs, agent-based implementations

Is agent-based programming even functional? Although agents and actors were developed in the
context of functional languages (remember, in our idealized implementation an agent was side-
effect free), agent-based programming differs starkly from the functional techniques you’ve seen
throughout this book:

You tell an agent a message, and this is usually interpreted as a command, so the semantics
are rather imperative.
An agent often performs a side effect, or tells a message to another agent, which will in
turn perform a side effect.
Most importantly, telling an agent a message returns no data, so you can’t compose tell
operations into pipelines the way you can with functions.
FP separates logic from data; agents contain data and at least some logic in the processing
function.

As a result, agent-based programming feels very different from FP as you’ve seen it so far, so
that it’s debatable whether or not agent-based concurrency is actually a functional technique. If
you think it’s not (as I’m inclined to), then you must conclude that FP is not very good at certain
types of concurrency (that is, where shared mutable state can’t be avoided) and it needs to be
complemented with a different paradigm, such as agent-based programming or the actor model.

With agents, it’s easy to program unidirectional data flows: the data always flows forward (to the
next agent), and no data is ever returned. In the face of this, we have two choices:

Embrace the idea of unidirectional data flow, and write your applications in this style. In
this approach, if you had clients connecting to a server, you wouldn’t use a request-
response model like HTTP, but rather a message-based protocol, such as WebSockets or a
message broker. This is a viable approach, especially if your domain is event-driven
enough that you already have a messaging infrastructure in place.
Hide the agent-specific details behind a more conventional API. This implies that agents
should be able to return a response to a message sender. In this approach, agents are used
as concurrency primitives that are implementation details (just as locks are) and that
should not dictate the program’s design. We’ll explore this approach next.

15.3.1. Agents as implementation details

The first thing we need is a way to get a reply from an agent, a “return value” of sorts. Imagine
that a sender creates a message that includes a “handle” that it can wait on. It then tells the
message to an agent, which will signal a result on that handle, making it available to the sender.
With this, we can effectively have two-way communication on top of the fire-and-forget Tell
protocol.

TaskCompletionSource provides a suitable handle for this purpose: the sender can create a
TaskCompletionSource, add it to the message payload, and await its Task. The agent will do its
work and set the result on the TaskCompletionSource when ready. Doing this manually for every
message for which you want a response would be tedious, so instead I’ve included in my
LaYumba.Functional library a beefed-up agent that takes care of all this wiring. I won’t include the
implementation details here, but the interface definition is as follows:

(366)

public interface Agent<Msg, Reply>

{

 Task<Reply> Tell(Msg message);

}

Notice that this is a completely new interface, with not one but two generic arguments: the type
of messages that the agent accepts, and the type that it replies with. Telling a message of type Msg
to this agent will return a Task<Reply>.

To start an agent of this type, we’ll use a processing function of type

State → Msg → (State, Reply)

or

State → Msg → Task<(State, Reply)>

That is, a function that, given the agent’s current state and the received message, computes not
only the agent’s new state, but also a reply to be returned to the sender.

Let’s look at a very simple example—an agent that keeps a counter and can be told to increment
the counter, but that also returns the counter’s new value:

You can now consume this agent like this:

var newCount = await counter.Tell(1);

newCount // => 1

newCount = await counter.Tell(1);

newCount // => 2

Notice that Tell returns a Task<int>, so the caller can just await the reply, as with any
asynchronous function. Essentially, you can use this agent as a thread-safe, stateful,
asynchronous version of a function of type Msg → Reply:

Thread safe, because it internally uses an ActionBlock that processes one message at a time.
Stateful, because the state kept by the agent can change as a result of processing a
message.
Asynchronous, because your message may have to wait while the agent processes other
messages in its queue.

This means that, compared to using locks, you’re not only gaining in safety (no deadlocks) but
also in performance (locks block the current thread, whereas await frees the thread to do other
work).

15.3.2. Hiding agents behind a conventional API

Now that we have a mechanism for two-way communication in place, we can improve the API
by hiding the specifics of agent-based programming. For example, in the case of a counter, we

(367)

could define a Counter class as follows.

Listing 15.6. Hiding an agent-based implementation behind a public API

Now a consumer of Counter can be blissfully unaware of its agent-based implementation. A
typical interaction would look like this:

var counter = new Counter();

var newCount = counter.IncrementBy(10);

newCount // => 10

Notice that, because agents are asynchronous, as a rule you should expose any value that’s
computed with agents wrapped in a Task. In the preceding example, I’m making an exception to
the rule by using the blocking call to Result and exposing a synchronous API. That’s because
incrementing a counter is such a fast operation that, even with high contention, latency should be
minimal.

(368)

15.4. Message-passing concurrency in LOB applications

In LOB applications, the need to synchronize access to some shared state usually arises from the
fact that entities in the application represent real-world entities, and we need to ensure that
concurrent access doesn’t leave them in an invalid state or otherwise break business rules. For
example, two concurrent requests to purchase a particular item shouldn’t result in that item being
sold twice. Similarly, concurrent moves in a multiplayer game shouldn’t lead to an invalid state
of the game.

Let’s see how this would play out in our banking scenario. We need to ensure that when different
transactions (debits, credits, transfers) happen concurrently, they don’t leave the account in an
invalid state. Does this mean we need to synchronize access to the account data? Not necessarily!
Let’s see what happens if we don’t take any special measures with respect to concurrency.

Imagine an account with a balance of 1,000. An automated direct debit payment occurs, causing
800 to be debited from the account. Concurrently, a transfer of 200 is requested, so that the
amount of 200 is also debited. If we use the event-sourced approach shown so far in this book,
we get the following result:

The direct debit request will cause an event to be created, capturing a debit of 800, and the
caller will receive an updated state with a balance of 200.
The transfer request will likewise cause an event to be created, capturing a debit of 200,
and the caller will receive an updated state with a balance of 800.
Whenever the account is loaded next, its state is computed from all past events, so that its
state will correctly have a balance of 0.
As new events are published, any clients that subscribe to updates can reflect those
changes in state. (For example, the client device on which the transfer request was made
can be notified when the direct debit has taken place, so that the account balance shown to
the user is always up to date.)

In short, if you use immutable objects and event sourcing, you don’t get any inconsistent data as
a result of concurrent updates, and this is another important benefit of event sourcing. But let’s
now change the requirements slightly. Assume that each account has a maximum allowed
overdraft; that is, there’s a business requirement that any account can never be overdraft beyond
a certain amount.

Imagine, like before, we have the following:

An account with a balance of 1000, and a maximum overdraft of 500
A direct debit payment of 800
Concurrently, a transfer request, also for 800

If you don’t synchronize access to the account data, both requests will succeed, leading to the
account having an overdraft of 600, violating our business requirement that the overdraft should
never be over 500. To enforce the maximum allowed overdraft, we need to synchronize the
execution of actions that modify the account balance, so that one of the concurrent requests in
this scenario should fail.

Next, you’ll see how to achieve this using actors.

(369)

15.4.1. Using an agent to synchronize access to account data

To ensure that the account data can’t be affected concurrently by different requests, we can
associate an agent with each account. Notice that agents are lightweight enough that it’s OK to
have thousands or even millions of them. Also notice that I’m assuming there’s a single server
process through which accounts can be affected. If this weren’t the case, you’d need to use an
implementation of the actor model instead; the gist of the following implementation would still
be valid.

To associate an agent with an account, we’ll define an AccountProcess class with an agent-based
implementation. This means we’re now using three classes to represent accounts:

AccountState—An immutable class that represents the state of an account at a given
moment in time
Account—A static class that only contains pure functions used to calculate state transitions
AccountProcess—An agent-based implementation that tracks the current state of an account
and handles any commands that affect the account’s state

You’ve seen implementations of Account and AccountState in chapter 10, and those don’t need to
change. Let’s look at AccountProcess next.

Listing 15.7. Sequential processing of commands that affect an account

Each instance of AccountProcess internally holds an agent, so all commands that affect the
account can be processed sequentially. Let’s look at the body of the agent: first, we calculate the
result of the command, given the command and the current state. This is done using pure, static

(370)

functions only.

The result, remember, is a Validation with an inner value including the resulting Event and the
new account state. If the result is Valid, we proceed to save and publish the created event (the
check is done as part of Traverse).

It’s important to note that persistence happens within the processing function. That is, the agent
shouldn’t update its state and start processing new messages before it has successfully persisted
the event representing its current state transition. (Otherwise, persisting the event could fail,
leading to a mismatch between the agent’s state and the state captured by the persisted events.)

Finally, we return the account’s updated state (which will be used when processing subsequent
commands) and the result of the command. This result includes both the new state and the
created event, wrapped in a Validation. This makes it easy to send back to the client the details of
the success and result of this request.

Notice how agents (and actors) complect state, behavior, and persistence (as such, they have
been labeled “more object-oriented than objects”). In this implementation, I’m injecting a
function for persisting the events, whereas most implementations of the actor model include
some configurable mechanism for persisting an actor’s state.

15.4.2. Keeping a registry of accounts

We now have an AccountProcess that can process commands applicable to a specific account in a
thread-safe manner. But when we get a command via a brand new controller, how can we get the
instance of AccountProcess for the relevant account? And how do we ensure that we never
accidentally create two AccountProcesses for the same account?

What we need is a single, application-wide registry that will hold all live AccountProcesses. It will
need to manage their creation and serve them by ID, so that a controller can get an AccountProcess
simply by providing the account ID that it’s received as part of a request.

Actor model implementations have such a registry built in, allowing you to register any
particular actor against an arbitrary ID. In our case, we’ll build our own simple registry.

Listing 15.8. A registry for storing and managing the creation of AccountProcesses

(371)

In this implementation, we have a single agent that manages a cache where all live instances of
AccountProcess are kept. If no AccountProcess is found for the given ID, the account’s current state
is retrieved from the DB and used to create a new AccountProcess, which is added to the cache.
Notice that, as usual, the loadState function returns a Task<Option<AccountState>> to acknowledge
that the operation is asynchronous and that no data may be found for a given ID.

Before you read on, go through the implementation again. Can you see any problems with this
approach? Let’s see: loading the account state from the DB is done within the agent body; is that
warranted? This means that reading the state for account x will block another thread that’s
interested in account y. That’s certainly suboptimal!

15.4.3. An agent is not an object

This is the kind of schoolboy error that’s common when you’re getting used to programming
with agents or actors. Although agents and actors are similar to objects, you can’t think of them
as such. The error in listing 15.8 is that we’re conceptually giving the agent the “responsibility”
of providing the caller with the requested AgentProcess, and this has given us a suboptimal
solution.

Instead, agents should only have the responsibility of managing some state. The agent in
question manages a dictionary, so we can call it to look up an item, or to add a new item, but
going to the DB to retrieve data is a relatively slow operation that’s not directly pertinent to
managing the cache of AgentProcesses.

With this in mind, let’s think of an alternative solution. A thread that wants to get hold of an
AgentProcess for an account with a given ID should do the following:

1. Ask the agent to look up the ID.
2. If no AgentProcess is stored, retrieve the current AccountState.
3. Ask the agent to create and register a new AgentProcess with the given state and ID.

This means that we need to go to the agent twice, so we need two different message types to
specify what we want the agent to do.

Listing 15.9. Different types of message can be required to convey the caller’s intention

(372)

public class AccountRegistry

{

 abstract class Msg { public Guid Id { get; set; } }

 class LookupMsg : Msg { }

 class RegisterMsg : Msg

 {

 public AccountState AccountState { get; set; }

 }

}

I’ve defined these message types as inner classes because they’re only used within the
AccountRegistry class to communicate with its agent.

We can now define the Lookup method, which constitutes the AccountRegistry’s public API, and is
therefore executed on the caller’s thread, as follows:

It first asks the agent to look up the ID; if the lookup fails, then the state is retrieved from the
DB. Note that this is done on the calling thread, leaving the agent free to handle other messages.
Finally a second message is sent to the agent asking it to create and register an AccountProcess
with the given account state and ID.

Notice that everything happens within the Task<Option<>> stack, because this is the type returned
both by loadState and by Tell. Even OrElse here resolves to an overload I’ve defined on
Task<Option<T>>, which executes the given fallback function if the Task has faulted or if the inner
Option is None.

All that’s left to show is the definition of the agent in the AccountRegistry’s constructor.

Listing 15.10. Revised definition of the agent for storing a registry of AccountProcesses

(373)

This implementation is slightly more complex, but more efficient, and it has given us the chance
to see a common pitfall when programming with agents; namely, performing an expensive
operation in the body of an agent that doesn’t strictly require synchronized access to the agent’s
state.

On the other hand, in both proposed implementations, once an AccountProcess is created, it’s
never terminated; it will persist events to the DB to keep the stored version in sync with the in-
memory state, but we read from the DB at most once. Is this a good thing, or bad? Of course, it
depends on how much data you’ll eventually have in memory and how much memory you have
available. It’s potentially a huge optimization, because access to in-memory data is orders of
magnitude faster than access to the DB. The ability to keep all your data in memory is one of the
big draws of the actor model: because actors can be distributed across machines, there’s no
effective limit on the amount of memory you can use, and accessing memory (even over the
network) is much faster than accessing even a local DB.

15.4.4. Putting it all together

With the previous building blocks in place, our implementation for the API controller can remain
fairly similar to what we had so far:

(374)

We now depend on one function for validating the command, and one for retrieving the
AccountProcess—this will be the Lookup method exposed by the AccountRegistry. We use a simple
adapter to translate from Task<Option<>> to Task<Validation<>>, so that we have a uniform monad
stack and can present the client with meaningful error messages if the command’s account ID is
incorrectly populated.

The main change, compared to the version in chapter 10, is that the result tuple is only returned
for feedback, whereas persisting and publishing the event happens when we submit the command
to the AccountProcess’s Handle method. This, as you’ve seen, is required to prevent concurrent
modifications to the account’s state, which could violate business rules such as limiting the
account’s maximal overdraft.

Finally, all that’s left is wiring up the different pieces of the application, which in the case of a
web application can be done in an IControllerActivator. The gist is as follows.

Listing 15.11. Wiring up the application components in an IControllerActivator

(375)

I’m not including the implementation for the functions that read and write events to storage
because they’re so technology-specific and don’t entail any particularly interesting logic. They’re
required to construct a single, application-wide AccountRegistry, whose Lookup function is
provided to a controller, allowing it to get the AccountProcess it requires.

You’ve now seen all the main components of an end-to-end solution for handing a money
transfer, with the added constraints of synchronized access to the account state.

(376)

Summary

Shared mutable state that’s accessed concurrently can cause difficult problems:

For this reason, it’s best to avoid shared mutable state entirely, and this can often be
achieved in parallel processing.
In other scenarios, notably in multithreaded applications that need to model real-
world entities, shared mutable state is often required.
Access to shared mutable state must be serialized to avoid inconsistent changes to
the data. This can be achieved using locks, but also using lock-free techniques.

Message-passing concurrency is a technique that avoids locks by restricting state mutation
to processes (actors/agents) that have exclusive ownership of some state, which they can
access single-threadedly in reaction to messages they’re sent.
An actor/agent is a lightweight process featuring

An inbox, in which messages sent to it are queued up.
Some state, of which it has exclusive ownership.
A processing loop, in which it processes messages sequentially, taking actions such
as creating and communicating with other agents, changing its state, and performing
side effects.

Agents and actors are fundamentally similar, but there are important differences:

Actors are distributed, whereas agents are local to a single process.
Unlike with agents, the actor model includes a model for error handling with
supervisor actors that can take action if the supervised actor fails, resulting in very
robust systems.

Message-passing concurrency feels quite different from other FP techniques, mainly
because FP works by composing functions, whereas actors/agents tend to work in a fire-
and-forget fashion.
It’s possible to write high-level functional APIs with agent-based or actor-based
implementations.

(377)

Appendix. Epilogue: what next?
Congratulations on taking up the challenge of learning FP and making it to the end of the book!
You’re now familiar with all the fundamental concepts of FP, as well as several advanced
techniques. I hope that you’ve enjoyed the book, and I encourage you to share your impressions
through a review, social media, or just by talking with colleagues.

By way of goodbye, I want to give you some suggestions on where to look next if you’d like to
take your exploration of FP further. Your next step would probably be to learn a functional
language (or a few). C# is a multiparadigm language, so you can mix and match as you like. A
functional language, on the other hand, will force you to use the functional approach throughout
—for example, by not allowing any state mutation at all. You’ll also find that functional
languages have better syntactic support for the techniques presented in this book.

An additional benefit of learning a functional language is that it will allow you to take advantage
of other learning resources: books, blogs, talks, and so on. Most learning material on FP
available today has code samples in Haskell or Scala.

The natural choice would be to learn Haskell, which is the functional language of reference and a
lingua franca among functional programmers. For this, I recommend you read Learn You a
Haskell for Great Good by Miran Lipovaca (No Starch Press, 2011).[1] Another good way to
learn Haskell is to do so while following Erik Meijer’s MOOC on FP.[2]

1

You can read the full contents online for free at http://learnyouahaskell.com/, but do
consider buying a copy to reward the author’s hard work.

2

Erik Meijer is, among other things, one of the main contributors to LINQ and Rx. His
MOOC on FP is available on edX (https://www.edx.org/), and you can follow along in
Haskell or one of several other languages.

Scala is a multiparadigm language with an emphasis on FP that runs on the Java virtual machine.
As of today, Scala is your best chance at doing FP and getting paid for it, and the Scala
community is the most active in addressing the question of how the ideas of FP (which tend to
originate in academia) can best be put to work in industry. If you want to learn Scala, I
recommend you do so by following Martin Odersky’s MOOCs.[3]

3

Martin Odersky is the creator of Scala, and his MOOCs are available on Coursera
(https://www.coursera.org/).

Two younger functional languages I’m fond of are Elm and Elixir, both of which are supported
by an enthusiastic user community and are gaining popularity, especially among startups. I hope
to see these two languages gain wider adoption and recognition in the next few years.

Elm (http://elm-lang.org/) is a strongly typed, purely functional client-side language that

(378)

http://learnyouahaskell.com/
https://www.edx.org/
https://www.coursera.org/
http://elm-lang.org/

compiles to JavaScript. The syntax is terse, similar to Haskell or F#, but the language and tooling
are much more user-friendly. It includes a framework that takes care of managing state and
performing side effects. As a result, the programmer only writes pure functions. Simply put, Elm
puts any existing JavaScript framework to shame. If you’re a full-stack web developer, consider
using Elm for the front end.

Elixir (http://elixir-lang.org/) is a dynamically typed language that runs on the Erlang virtual
machine (which is based on the actor model, discussed in chapter 15), and as such it’s
particularly well suited if your interest is in systems with a high degree of concurrency and you
want to further explore message-passing concurrency.

There are many more functional and multiparadigm languages out there (sorry if I forgot to
include your favorite!), each with its own appeal. But the ideas of FP that you’ve learned in this
book are language-independent and will enable you to acquire a basic working knowledge of any
functional language within a couple of days, or weeks at most. Also, don’t forget to check out
Manning’s library, which has titles on all the languages I’ve just mentioned.

Goodbye.

(379)

http://elixir-lang.org/

Inverted chapter dependency graph

(380)

The core functions of FP

Function/signature/aka Description (book location)

Return T → P<T> point, lift, pure
Takes a value of type T and “lifts” it into a
“structure” with the given T as its “inner value”
(sections 4.3 and 8.3).

Map F<T> → (T → R) → F<R> fMap, project,
lift; Select in LINQ

Takes an F<T> (a functor over T; that is, a
structure whose inner value(s) have type T) and
a function T → R, and returns an F<R> whose
inner value(s) are the result of applying the
given function to the inner value(s) of the given
functor (section 4.1).

Apply A<T → R> → A<T> → A<R>

Takes an applicative functor A<T → R>
wrapping a function, and an A<T> wrapping an
argument, and returns an A<R> wrapping the
result of applying the wrapped function to the
wrapped argument (section 8.1).

Bind M<T> → (T → M<R>) → M<R>
flatMap, chain, collect; SelectMany in LINQ

Takes an M<T> (a monad over T) and a
function T → M<R>, extracts the inner value(s)
from the given monad, and applies the given
function to it (sections 4.3 and 8.3).

Flatten M<M<T>> → M<T> join

Flattens a nested monad; if Bind is defined,
Flatten can be defined by calling Bind with the
identity function; vice versa, if Flatten is
defined, Bind can be defined by composing
Flatten with Map.

Where M<T> → (T → bool) → M<T> filter

Takes a structure M<T> and a predicate over T,
and returns a structure M<T> wrapping all the
values in the given structure that satisfy the
predicate (section 4.4).

Aggregate F<T> → Acc → (Acc → T → Acc)
→ Acc fold, foldLeft, reduce

Takes a foldable structure of Ts, an initial
accumulator value, and a reducer function. The
reducer is a binary function that takes the
accumulator and a single value T and yields a
new accumulator. Aggregate traverses the
structure with the given reducer, giving it each
T in the foldable and the accumulator computed
so far (section 7.6).

Traverse Tr<T> → (T → A<R>) →
A<Tr<R>> mapM

Takes a traversable structure Tr<T> and a
function that takes a T and returns an
applicative A<R>, and traverses the traversable
with the given function, collecting the results in
an A<Tr<R>> (in contrast with Map, which
would produce a Tr<A<R>> instead) (section
13.2).

(381)

Index
[SYMBOL][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Y][Z]

SYMBOL

. operator

() (empty parens)

{} (curly braces)

+ operator

++ operator

| sign

A

AAA (Arrange Act Assert) pattern

abstraction, coding at different levels of

 crossing levels of abstraction

 Map and Bind functions

 patterns in functional programming

 proper level of abstraction

 regular versus elevated values

Action delegate

 overview

 Unit type and

ActionBlock

actor model

actors, agents versus

adapter functions

agent-based concurrency

agents

 actors versus

 examples of using

 implementations of functional APIs

 agents as implementation details

 hiding agents behind conventional APIs

 implementing in C#

 objects versus

 using agents to synchronize access to account data

 using to handle concurrent requests

Aggregate

 IEnumerable

 in LINQ

 overview

 IObservable

aggregation

Akka.NET

Algebraic types

anemic objects

any function

APIs

 HTTP API for currency conversion

 implementations of functional APIs

 Option type and

 partial-application-friendly API

 data access function

 types as documentation

append-only data storage

applicative functor

applicative Traverse, harvesting validation errors with

applicatives

Apply, Bind versus

 harvesting errors with applicative flow

 monadic flow

 validation with smart constructors

ArgumentException

Arrange Act Assert pattern.

 See AAA.

arrange phase

arrow notation

arrow syntax

AsParallel (IEnumerable)

assertion-based storage

assertions

associativity

async method

asynchronous computations

 combining asynchrony and validation

 LINQ expressions with monad stack

 reducing number of effects

 stacked monads

 failure

 handling

 retrying operation

(382)

 HTTP API for currency conversion

 need for

 running in parallel

 Task-Based Asynchronous Pattern

asynchrony effect, 2nd

atomically committed transactions

AVERAGE function

await keyword, 2nd

B

backpressure

biased implementation

binary function

binary trees

Bind, 2nd, 3rd, 4th

 Apply versus

 harvesting errors with applicative flow

 monadic flow

 validation with smart constructors

 chaining functions with

 coding at different levels of abstraction

 combining Option and IEnumerable with

 combining Option-returning functions

 flattening nested lists with

 relation between functors and monads

 Return function

breaking change

C

C# 6 and C# 7

 expression-bodied members

 getter-only auto-properties

 importing static members with using static statement

 local functions

 syntax for tuples

CAS (compare-and-swap)

chaining operations, error handling

clean code

client applications, representing outcomes to

 Either-like interface

 Option-like interface

 returning DTO

clock function

closures

codomain

command side, 2nd

commands, event-sourced system

Comparison delegate

complex structures, generating

composed functions

composing application

Concat (IObservable)

conciseness

concurrency, function purity and

 parallelizing impure functions

 parallelizing pure functions

 state mutation

configuration errors

Connect function

Cons

continuation, 2nd

copy methods

core functions

COUNT function

count variable

coupling

curly braces

curried form

curried functions, partial application

custom types, capturing data with data objects

D

Dapper

data

 data structures

 binary trees

 linked list

 immutability

 copy methods

 F# language

 immutable list

 strategies

 state mutation

 state, identity, and change

data flow

(383)

 LINQ library

 writing functions that compose well

data objects, capturing data with

 composing values with tuples and objects

 custom types

 primitive types

 writing honest functions

data storage

 append-only

 storing state

data streams

 creating IObservables

 creating timers

 from callback-based subscriptions

 from simpler structures

 using Subject to tell IObservable when it should signal

 logic that spans multiple events

 detecting sequences of pressed keys

 notifying about overdrafts

 reacting to multiple event sources

 representing with IObservable interface

 marble diagrams

 subscribing to IObservables

 transforming and combining

 combining and partitioning streams

 error handling with IObservable

 stream transformations

 when to use IObservables

data structures

 binary trees

 linked lists

 common list operations

 modifying immutable list

data transfer object.

 See DTO.

date validator

DateTime

Datomic

decimal value

declarations

declarative code, imperative code versus

decoupling, 2nd

defensive copy

delegate keyword

Delegate type

delegates

dependencies, injecting functions as

dependency inversion

designing function signatures

designing programs with function composition.

 See function composition.

destructive updates

developer errors

dictionaries

discriminated union

dishonest functions

domain

domain modeling

DropWhile (list)

DTO (data transfer object)

duplication, avoiding

 encapsulating setup and teardown into HOF

 tradeoffs of HOFs

 turning using statement into HOF

durable subscriptions

E

echo

Either type, error handling with, 2nd

 changing between different error representations

 exceptions

 refactoring to validation and exceptional

 specialized versions of

elevated functions

elevated values

 coding at different levels of abstraction

 function composition and

 traversables

Elixir, 2nd

Elm

empty parens

empty tuple

end-to-end server-side workflow

 declarative versus imperative code

 layering

error handling

 chaining operations

 exercises

 representing outcomes to client applications

 Either-like interface

 Option-like interface

 returning DTO

 validation

 adding validation logic

(384)

 choosing suitable representation for errors

 Either-based API

 with Either type, 2nd

 changing between different error representations

 exceptions

 refactoring to validation and exceptional

 specialized versions of

 with Option type

ES (event sourcing)

 data storage

 append-only

 storing state

 event-sourced system

 adding validation

 commands

 creating views of data from events

 events

 immutable storage

 Datomic

 domain and

 Event Store

 pattern matching

 C# support for

 expression-based

 matching on list structure

 persisting events

 reconstructing current state from past events

 representing events

 representing state

 state transitions

event handlers

event sourcing.

 See ES.

Event Store, 2nd

event-based storage

event-sourced system

 adding validation

 commands

 creating views of data from events

 events

events, 2nd, 3rd

exception handling, with Try delegate

 composing computations that may fail

 extracting information from JSON object

 monadic composition

 representing computations that may fail

Exceptional

exceptions, error handling and

expression-based pattern matching

expression-bodied property

expressions, statements versus

extension methods

F

F class, 2nd

F# language, immutability and

factory method

fail fast

Flatten (IEnumerable), 2nd

fold function, 2nd

for loops

ForEach, performing side effects with

foreign exchange rates.

 See FX.

FP paradigm

FP theory

from clause

FromEventPattern (IObservable)

FsCheck, 2nd, 3rd

Func delegate

 overview

 Unit type and

function composition, 2nd

 data flow

 LINQ library

 writing functions that compose well

 domain modeling

 elevated values and

 end-to-end server-side workflow

 declarative versus imperative code

 layering

 exercises

 method chaining

 overview

 workflows

 flexibility and

 refactoring

 validation request

function factories

function pipelines

function purity

 concurrency and

 parallelizing impure functions

 parallelizing pure functions

(385)

 state mutation

 evolution of computing and

 exercises

 side effects

 overview

 strategies for managing

 testability and

 header interfaces

 impure functions

 parameterized unit tests

 validation scenario

function signatures and types

 capturing data with data objects

 composing values with tuples and objects

 custom types

 primitive types

 writing honest functions

 exercises

 Option

 APIs and

 as natural result type of partial functions

 implementing

 overview

 versus null option

 signature design

 arrow notation

 information contained in

 Unit

 bridging gap between Action and Func delegates

 void

functional programming

 avoiding state mutation

 benefits of

 C# language

 C# 6 and C# 7

 functional future of

 LINQ library

 exercises

 functions

 as first-class values

 as maps

 higher-order functions

 representing in C#

 writing programs with strong guarantees

functions

 as first-class values

 as maps

 higher-order functions

 adapter functions

 that create other functions

 that depend on other functions

 using to avoid duplication

 using to avoid duplication, Encapsulating setup and teardown into a HOF

 using to avoid duplication, Tradeoffs of HOFs

 using to avoid duplication, Turning the using statement into a HOF

 injecting as dependencies

 representing in C#

 delegates

 Dictionaries

 Func and Action delegates

 Lambda expressions

 methods.

 See structuring application with functions.

functors, 2nd, 3rd

FX (foreign exchange rates)

G

generating random data

 complex structures

 integers

 primitives

generators

getter-only property, 2nd

global mutable state

greet function

greetWith function

Guid

H

harvest errors

head element

header interfaces

 injecting functions as dependencies

 overview

 pushing boundaries of pure code

HOFs (higher-order functions)

 adapter functions

 that create other functions

(386)

 that depend on other functions

 using to avoid duplication

 encapsulating setup and teardown into HOF

 tradeoffs of HOFs

 turning using statement into HOF

hole in the middle pattern

honest functions

HTTP API for currency conversion

I

I/O operations

identity function

IDisposable

IEnumerable

 combining Option element and with Bind function

 overview, 2nd, 3rd

if operator

if statement

immutability

 copy methods

 F# language

 immutable list

 strategies

immutable list

 modifying

 overview

immutable storage

 Datomic

 domain and

 Event Store

immutable types

immutable values

ImmutableList

imperative code, declarative code versus

implicit conversion, 2nd

impure functions

 parallelizing

 testability and

InlineData attribute

input argument

instance methods

int type

Int.Parse function

integers, generating

Interlocked class

inversion of control

invocations

IObservable

 creating

 creating timers

 from callback-based subscriptions

 from simpler structures

 using Subject to tell IObservables when it should signal

 error handling with

 representing data streams with

 marble diagrams

 subscribing to IObservables

 when to use

IQueryable

isolation

ISP (interface segregation principle)

iterated application

J

JObject.Parse

JSON object, extracting information from

K

KeyNotFoundException

keypresses

L

lambda expressions, 2nd

Language-Integrated Query.

 See LINQ.

layering, 2nd

LaYumba.Functional library, 2nd

laziness

(387)

lazy computations, 2nd

 composing

 creating middleware for DB access

 composing functions that perform setup/teardown

 managing DB transaction

 middleware function

 pyramid of doom

 query pattern

 timing of operation

 exception handling with Try delegate

 composing computations that may fail

 extracting information from JSON object

 monadic composition

 representing computations that may fail

 Option API

 GetOrElse function

 OrElse function

lazy evaluation

left identity

let clause, in LINQ

lifting functions

linear function pipeline

linked lists

 common list operations

 modifying immutable list

LINQ library

 clauses

 data flow

 LINQ expressions with monad stack

 using with arbitrary functors

 using with arbitrary monads

List function

ListFormatter

literals

LOB applications, message-passing concurrency in

 agent versus objects

 keeping registry of accounts

 using agents to synchronize access to account data

local functions, 2nd

Lookup

 IDictionary

 NameValueCollection

loose coupling

M

MailboxProcessor

Main, 2nd

manual currying

Map

 coding at different levels of abstraction

 functors

 mapping function onto Option structure

 mapping function onto sequence

Map (Option)

mapped/bound function

mapping functions

maps

 functions as

 overview

marble diagrams

Match method, 2nd

memoization

Merge (IObservable)

message-passing concurrency, 2nd

 agent-based implementations of functional APIs

 agents as implementation details

 hiding agents behind conventional APIs

 agents

 actors versus

 examples of using

 implementing in C#

 using to handle concurrent requests

 in LOB applications

 agent versus objects

 keeping registry of accounts

 using agents to synchronize access to account data

 need for shared mutable state

method chaining

method overloading

method resolution

MethodGroup

methods

mid-level components

middleware, creating for DB access

 composing functions that perform setup/teardown

 managing DB transaction

 middleware function

 pyramid of doom

 query pattern

 timing of operation

modularity

 in FP

(388)

 in OOP

monad laws

monadic bind

monadic composition

monadic Traverse, validating list of values with

monads

 associativity

 Bind

 chaining functions with Bind function

 functors and

 left identity

 LINQ expressions with monad stack

 right identity

 stacked

 using LINQ with arbitrary functors

 using LINQ with arbitrary monads

MOOCs

multi-argument functions

 applicative

 Bind versus Apply functions

 harvesting errors with applicative flow

 monadic flow

 validation with smart constructors

 function application in elevated world

 applicatives

 lifting functions

 property-based testing

 functors

 monads

 associativity

 Bind

 left identity

 LINQ clauses

 right identity

 using LINQ with arbitrary functors

 using LINQ with arbitrary monads

multi-paradigm approach

multiply function

multithreading

mutable static fields

mutable struct

mutating arguments, function purity and

mutation

MVC controller

N

NameValueCollection, 2nd

nested calls

nested lists, flattening with Bind function

non-blocking operations

None, 2nd

null checks

nullary function

NullReferenceException, 2nd

O

objects, composing values with

onComplete handler (IObservable)

OnCompleted (IObservable)

OnError (IObservable)

OnNext (IObservable)

OOP (object-oriented programming)

operands

operators

Option API, lazy computations and

 GetOrElse

 OrElse

Option function, combining IEnumerable with Bind function

Option structure, mapping function onto

Option type

 APIs and

 as natural result type of partial functions

 looking up data in collection

 parsing strings

 smart constructor pattern

 error handling with

 implementing

 overview

 versus null option

optionalAges function

optionality

OrderBy (IEnumerable)

OrderByDescending (IEnumerable), 2nd

OrElse (Option)

OrElse (Task)

Orleans

Otherwise handler (List)

(389)

P

PairWithPrevious (IObservable), 2nd

paradigm

Parallel LINQ.

 See PLINQ.

parallel track

ParallelEnumerable, 2nd

parallelizing

 impure functions

 pure functions

ParallelQuery, 2nd

parameterized unit tests

params keyword

parser function

parsing numbers

partial application

 curried functions

 generalizing

 manually enabling

 order of arguments

 partial-application-friendly API

 data access function

 types as documentation

partial functions

 looking up data in collection

 parsing strings

 smart constructor pattern

Pattern class

patterns in functional programming

 chaining functions with Bind function

 combining Option-returning functions

 flattening nested lists with

 monads

 relation between functors and monads

 Return function

 coding at different levels of abstraction

 crossing levels of abstraction

 Map and Bind functions

 proper level of abstraction

 regular vs. elevated values

 combining Option and IEnumerable with Bind

 exercises

 filtering values with Where function

 Map function

 functors

 mapping function onto Option

 mapping function onto sequence

 pattern matching

 C# support for

 expression-based

 matching on list structure

 performing side effects with ForEach method

payload

persistent data structures

persisting events

PLINQ (Parallel LINQ)

predicate, 2nd

preserving errors

primitive types

 capturing data with data objects

 overview

primitives, generating

processing loop

Property attribute (FsCheck)

property-based testing, 2nd

pure code, pushing boundaries of

pure functions, parallelizing

purity, loss of

pyramid of doom

Q

Query method (Dapper), 2nd

query pattern, middleware

query side, 2nd

R

race condition

Random

random data, generating

 complex structures

 integers

 primitives

Range (Enumerable)

(390)

RangeIterator

rates

reading data

record types, 2nd

recursive type

reduce operation

reducing list to single value

 Aggregate method, in LINQ

 aggregating validation results

 validation errors

refactoring

 for testability and error handling

 workflows

regular values

 coding at different levels of abstraction

 overview

REPL

representing state

retrieved resources, maintaining cache of

Return, 2nd, 3rd, 4th

right identity

runtime error

Rx (Reactive Extensions)

S

Scan (IObservable)

Select (IEnumerable), 2nd, 3rd, 4th

select clause, 2nd

SelectMany, 2nd, 3rd

separation of concerns

separator

shallow copy

shape-preserving functions

side effects

 function purity and

 overview

 strategies for managing

 I/O

 mutating arguments

 performing with ForEach

single-value structures

 applying multiple validators to

 defining Traverse for

smart constructor

snapshots

software transactional memory.

 See STM.

Some function

Some(T) container

Sort (List), 2nd

specialized containers

stacked monads

stacking

StartWith (IObservable)

state mutation

 avoiding

 function purity and

 overview

state transactions

state transitions

state variable

stateful computations

 general pattern for

 generating random data

 complex structures

 integers

 primitives

stateful programs

 maintaining cache of retrieved resources

 refactoring for testability and error handling

 stateful computations and

StatefulComputation delegate

stateless agent

stateless applications

stateless implementation

statements

 expressions versus

 overview

states

static function

STM (software transactional memory)

string type, 2nd

structure sharing

structuring application with functions

 composing application

 exercises

 method resolution

 modularity in FP

 modularity in OOP

(391)

 partial application

 curried functions

 generalizing

 manually enabling

 order of arguments

 partial-application-friendly API

 reducing list to single value

 Aggregate method, LINQ

 aggregating validation results

 validation errors

Subject

Subscribe (IObservable), 2nd

SUM function, 2nd

supervisor actors

SWIFT network

switch statement, 2nd, 3rd

synchronized access

System.Collections.Immutable library

System.DataFlow namespace

System.Linq library, 2nd

System.Linq.Enumerable class

System.Math class, 2nd

System.Reflection

System.Tuple class

T

tail element

TakeWhile (IEnumerable)

Task-Based Asynchronous Pattern

 overview

 using Traverse with

Task, creating an IObservable from, 2nd

TaskCompletionSource

Tell (Agent)

ternary function, 2nd

testability, function purity and

 header interfaces

 impure functions

 interface-based approach to testing

 parameterized unit tests

TestCase attribute

Theory attribute

this keyword

throw exceptions

throw statement

TimeSpan

ToEither (Option)

ToFunc (Action), 2nd

ToImmutableList

ToList

total functions

traversables

 applying multiple validators to single value

 defining Traverse for single-value structures

 harvesting validation errors with applicative Traverse

 using Traverse with Task to await multiple results

 validating list of values with monadic Traverse

TraverseM function

Try delegate, exception handling with

 composing computations that may fail

 extracting information from JSON object

 monadic composition

 representing computations that may fail

try/catch blocks

tuples

 composing values with

 syntax for

type alias

type-safe

typeclasses

types, as documentation

U

unary function

Unit

 bridging gap between Action and Func delegates

 void response

upward-crossing functions

Uri

using block

Using function

using statement, turning into HOF

using static statement

V

(392)

Valid function

valid value

validation

 adding to event-sourced system

 combining asynchrony and

 LINQ expressions with monad stack

 reducing number of effects

 stacked monads

 error handling

 adding validation logic

 choosing suitable representation for errors

 Either-based API

 smart constructors with

 validation errors

validation functions

validation request, workflows

value objects

values, composing with tuples and objects

variables

view models

void methods, 2nd

void response, Unit type

W

Where (IEnumerable), 2nd, 3rd

where clause, in LINQ

With method

workflows

 end-to-end server-side workflow

 flexibility and

 refactoring

 validation request

world-crossing functions

writer monad

writing data

X

XUnit

Y

yield return statement

Z

Zip (IEnumerable), 2nd

(393)

List of Figures
Chapter 1. Introducing functional programming

Figure 1.1. Modifying data in place can give concurrent threads an incorrect view of the
data

Figure 1.2. The functional approach: creating a new, modified version of the original
structure

Figure 1.3. A mathematical function is a mapping between the elements of two sets.

Figure 1.4. Where takes a predicate function as input.

Figure 1.5. A HOF that iteratively applies the function given as an argument

Figure 1.6. A HOF that conditionally applies the function given as an argument

Figure 1.7. A HOF that produces a function that’s given as input to another HOF

Figure 1.8. A HOF that wraps a given function between setup and teardown logic

Figure 1.9. HOFs call back into the calling function.

Chapter 2. Why function purity matters

Figure 2.1. A program where I/O can easily be isolated

Figure 2.2. Business scenario: validating a transfer request

Figure 2.3. Testing a pure function is easy.

Figure 2.4. An impure function from the perspective of testability

Chapter 3. Designing function signatures and types

Figure 3.1. An honest function does exactly what the signature says.

Figure 3.2. A dishonest function can have an outcome that isn’t accounted for in the
signature.

Figure 3.3. An object or tuple as a Cartesian product

Figure 3.4. Option<T> is the union of the set Some(T) with the singleton set None.

Figure 3.5. Parsing a string as an int is a partial function

Figure 3.6. Converting from int to Age can also be modeled with Option.

Chapter 4. Patterns in functional programming

(394)

Figure 4.1. Mapping a function over an IEnumerable

Figure 4.2. Mapping a function over an Option

Figure 4.3. Bind on IEnumerable returns a flat list.

Figure 4.4. Regular values and elevated values

Figure 4.5. Functions classified in relation to levels of abstractions

Figure 4.6. Map in terms of regular vs. elevated values

Figure 4.7. Bind in terms of regular vs. elevated values

Chapter 5. Designing programs with function composition

Figure 5.1. Data flowing through a sequence of functions

Figure 5.2. Data flow through the AverageEarningsOfRichestQuartile function

Figure 5.3. Example workflow: validating a request before processing it

Figure 5.4. Viewing validation as a step in the data flow

Figure 5.5. A type mismatch preventing function composition

Figure 5.6. Modeling a linear workflow with function composition

Figure 5.7. The Option API helps us compose existing functions.

Figure 5.8. An unhelpful way to structure interaction between layers

Figure 5.9. A top-level workflow composing functions exposed by lower-level components

Figure 5.10. Mid-level components can be pure.

Chapter 6. Functional error handling

Figure 6.1. Either represents one of two possible outcomes.

Figure 6.2. Chaining Either-returning functions

Figure 6.3. With Option and Either, Match is used to leave the abstraction.

Figure 6.4. The outer layer of an application consists of adapters.

Figure 6.5. Errors are treated as part of the returned payload.

Chapter 7. Structuring an application with functions

Figure 7.1. Partial application summary

Figure 7.2. A higher-level component consumes lower-level components via interfaces.

(395)

Figure 7.3. Reducing a list to a single value with Aggregate

Chapter 8. Working effectively with multi-argument functions

Figure 8.1. Mapping a binary function onto an Option yields a unary function wrapped in an
Option.

Figure 8.2. Apply performs function application in the elevated world.

Figure 8.3. Relation of functor, applicative, and monad

Chapter 9. Thinking about data functionally

Figure 9.1. Loss of data as a result of concurrent updates

Figure 9.2. In FP, change can be represented by creating new versions of the data.

Figure 9.3. An entity whose state changes over time

Figure 9.4. A linked list containing the values ["a", "b", "c"]

Figure 9.5. Adding an item to a list doesn’t affect the original list.

Figure 9.6. The Map function for a binary tree

Figure 9.7. The tree with the added value shares parts of the structure with the original tree.

Chapter 10. Event sourcing: a functional approach to persistence

Figure 10.1. So-called stateless servers usually rely on a big blob of mutable data called the
DB.

Figure 10.2. An entity as a sequence of logically related states

Figure 10.3. Shifting the focus from states to state transitions

Figure 10.4. Recovering the present state of an entity from its event history

Figure 10.5. High-level comparison of data flows in a traditional vs. event-sourced system.

Figure 10.6. The command side of an event-sourced system

Figure 10.7. Event handlers can subscribe to event streams published by Event Store.

Figure 10.8. Example structure of a bank statement

Chapter 11. Lazy computations, continuations, and the beauty of monadic composition

Figure 11.1. Definition of Map for Func<T>

Figure 11.2. A middleware pipeline for accessing the DB

Figure 11.3. A single middleware function

(396)

Figure 11.4. Bind adds a middleware block to the pipeline.

Figure 11.5. Map adds a transformation to the pipeline.

Chapter 12. Stateful programs and stateful computations

Figure 12.1. Keeping a cache of previously retrieved rates

Figure 12.2. Using the NextInt generator to generate a Boolean

Figure 12.3. Definition of Bind for Generator<T>

Figure 12.4. Numbering each element in a tree

Chapter 13. Working with asynchronous computations

Figure 13.1. Comparing Map and Traverse

Chapter 14. Data streams and the Reactive Extensions

Figure 14.1. Marble diagrams provide an intuitive way to understand IObservables.

Figure 14.2. Select maps a function onto a stream.

Figure 14.3. Concat waits for an IObservable to complete and then produces elements from
the other IObservable.

Figure 14.4. Merge merges two IObservables into one.

Figure 14.5. Partitioning an IObservable according to a predicate

Figure 14.6. Simple dataflow between three IObservables

Figure 14.7. Dataflow with a separate branch for handling errors

Figure 14.8. CombineLatest signals whenever one of two IObservables signals.

Figure 14.9. Sample produces the values from a “source” stream whenever a “sampler”
stream signals.

Figure 14.10. Scan aggregates all values produced so far.

Chapter 15. An introduction to message-passing concurrency

Figure 15.1. An agent consists of a message inbox and a processing loop.

Figure 15.2. Simple interaction between agents by exchanging messages

Figure 15.3. A system in which several requests may be received concurrently

Figure 15.4. Breaking up the work between agents that can run concurrently

(397)

List of Tables
Chapter 2. Why function purity matters

Table 2.1. Requirements of pure functions

Table 2.2. Unit testing from a functional perspective

Chapter 3. Designing function signatures and types

Table 3.1. Expressing function signatures with arrow notation

Chapter 5. Designing programs with function composition

Table 5.1. Comparing the imperative and declarative styles

Chapter 6. Functional error handling

Table 6.1. Option and Either can both represent possible failure

Table 6.2. Some particularized versions of Either and their state names

Chapter 7. Structuring an application with functions

Table 7.1. Arguments to Dapper’s Query method

Chapter 8. Working effectively with multi-argument functions

Table 8.1. Summary of the core functions and how they define patterns

Chapter 10. Event sourcing: a functional approach to persistence

Table 10.1. Event data can be stored in a relational DB table.

Chapter 11. Lazy computations, continuations, and the beauty of monadic composition

Table 11.1. Monadically composable computations demonstrated in this book

Chapter 14. Data streams and the Reactive Extensions

Table 14.1. How IObservable compares with other abstractions

(398)

List of Listings
Chapter 1. Introducing functional programming

Listing 1.1. Functional approach: Where and OrderBy don’t affect the original list

Listing 1.2. Nonfunctional approach: List<T>.Sort sorts the list in place

Listing 1.3. Mutating state from concurrent processes yields unpredictable results

Listing 1.4. C# 6 and C# 7 features relevant for FP

Listing 1.5. Declaring a delegate

Listing 1.6. Instantiating and using a delegate

Listing 1.7. Declaring a function inline with a lambda

Listing 1.8. Lambdas have access to variables in the enclosing scope

Listing 1.9. A function can be exhaustively represented with a dictionary

Listing 1.10. Where: a typical HOF that iteratively applies the given predicate

Listing 1.11. A HOF that optionally invokes the given function

Listing 1.12. Connecting to a DB requires some setup and teardown

Listing 1.13. Duplication of setup/teardown logic

Listing 1.14. Encapsulating setup and teardown of the database connection into a HOF

Listing 1.15. A HOF that can be used instead of the using statement

Chapter 2. Why function purity matters

Listing 2.1. A list formatter combining pure and impure functions

Listing 2.2. Generating a range of integers

Listing 2.3. Combining elements from parallel lists with Zip

Listing 2.4. List formatter refactored to use pure functions only

Listing 2.5. A pure implementation that executes in parallel

Listing 2.6. Parameterized tests allow you to check your code in a variety of situations

Listing 2.7. Injecting a specific value, rather than an interface, makes IsValid pure

Chapter 3. Designing function signatures and types

(399)

Listing 3.1. A custom type that can only be instantiated with a valid value

Listing 3.2. Encapsulating the internal representation of Age and the logic for comparison

Listing 3.3. Converting Action into Func<Unit>

Listing 3.4. Writing HOFs that take a Func or an Action, without duplication

Listing 3.5. Implementing the Some and None types

Listing 3.6. Idealized relation of Option to its cases None and Some

Listing 3.7. Option<T> can capture both the Some and None states

Listing 3.8. Implementing a smart constructor for Age

Chapter 4. Patterns in functional programming

Listing 4.1. Map applies a function to each element of the given IEnumerable

Listing 4.2. Definition of Map for Option

Listing 4.3. Implementation of Bind and Map for Option

Listing 4.4. Using Bind to compose two functions that return an Option

Listing 4.5. Filtering the inner value of an Option

Chapter 5. Designing programs with function composition

Listing 5.1. Defining a function as the composition of two existing functions

Listing 5.2. Using method chaining syntax to compose functions

Listing 5.3. Defining a query by chaining methods in Linq.Enumerable

Listing 5.4. Using Option to represent passing/failing validation

Listing 5.5. Adding a new step to an existing workflow

Listing 5.6. In OOP, objects capture both data and behavior

Listing 5.7. FP separates data and behavior

Listing 5.8. Implementation of the end-to-end workflow in the controller

Chapter 6. Functional error handling

Listing 6.1. Capturing error details with Either

Listing 6.2. An Option-based implementation modeling the recruitment process

Listing 6.3. An equivalent Either-based implementation

(400)

Listing 6.4. Using Bind to chain several Either-returning functions

Listing 6.5. A base class for representing failure

Listing 6.6. Distinct types capture details about specific errors

Listing 6.7. Chaining several validation functions with Bind

Listing 6.8. Translating None to status code 404

Listing 6.9. Translating Left to status code 400

Listing 6.10. A DTO representing the outcome, to be serialized in the response

Listing 6.11. Returning error details as part of a successful response payload

Listing 6.12. Translating an Exception-based API to an Exceptional value

Listing 6.13. Different treatment for validation errors and exceptional errors

Chapter 7. Structuring an application with functions

Listing 7.1. A binary function mapped over a list

Listing 7.2. Type inference fails with multi-argument methods

Listing 7.3. Using multi-argument methods as arguments to HOFs requires messy syntax

Listing 7.4. Different ways of obtaining a delegate instance

Listing 7.5. A custom type for connection strings

Listing 7.6. Function signatures are more explicit when using custom types

Listing 7.7. An adapter function that’s better suited for partial application

Listing 7.8. Supplying arguments to get a function of the desired signature

Listing 7.9. A controller with too many responsibilities?

Listing 7.10. Interfaces in OOP capture the components’ responsibilities

Listing 7.11. An implementation that’s functional in the small and OO in the large

Listing 7.12. Injecting functions as dependencies

Listing 7.13. Dependencies can be passed as arguments to a function

Listing 7.14. When dependencies are functions, unit tests can be written without fakes

Listing 7.15. Composing the services required to fulfill the BookTransfer request

Listing 7.16. Sum as a special case of Aggregate

(401)

Listing 7.17. Using Aggregate to create a tree of all items in a list

Listing 7.18. Using Aggregate and Bind to apply all validation in a sequence

Listing 7.19. Collecting errors from all validators that fail

Chapter 8. Working effectively with multi-argument functions

Listing 8.1. Mapping a curried function onto an Option

Listing 8.2. Mapping a binary function onto an Option

Listing 8.3. Implementation of Apply for Option

Listing 8.4. Two equivalent ways to achieve function application in the elevated world

Listing 8.5. Partial application in the worlds of regular and elevated values

Listing 8.6. A property-based test illustrating the applicative law

Listing 8.7. Teaching FsCheck to create an arbitrary Option

Listing 8.8. The property-based test, parameterized with arbitrary Options

Listing 8.9. A property-based test proving that right identity holds for the Option type

Listing 8.10. A property-based test illustrating left identity for IEnumerable

Listing 8.11. A property-based test illustrating Bind associativity for Option

Listing 8.12. LINQ is a dedicated syntax for expressing queries

Listing 8.13. A LINQ expression with a single from clause and its interpretation

Listing 8.14. Two overloads of SelectMany are required to implement the query pattern

Listing 8.15. Different ways to add two optional integers

Listing 8.16. Using the let clause with Option

Listing 8.17. Using the where clause with Option

Listing 8.18. Validation using an applicative flow

Listing 8.19. Implementation of Apply for Validation

Listing 8.20. Validation using a monadic flow

Listing 8.21. Implementation of Bind for Validation

Chapter 9. Thinking about data functionally

Listing 9.1. Temporary inconsistency as a result of non-atomic updates

(402)

Listing 9.2. A simple model for the state of a bank account

Listing 9.3. Using the convenient object initializer syntax

Listing 9.4. Defining a copy method

Listing 9.5. Obtaining a modified version of the object

Listing 9.6. Refactoring towards immutability: removing all setters

Listing 9.7. Preventing mutation by using immutable collection

Listing 9.8. Adding a child to an immutable object requires creation of a new parent object

Listing 9.9. A single With method that can set any property

Listing 9.10. Using a general-purpose copy method

Listing 9.11. Writing the domain model in F#

Listing 9.12. Using F# copy and update expressions

Listing 9.13. Implementation of a functional singly linked list

Listing 9.14. Adding a value to an immutable tree

Chapter 10. Event sourcing: a functional approach to persistence

Listing 10.1. Some events affecting a bank account

Listing 10.2. A simplified model of the entity state

Listing 10.3. Matching on the type of an expression in C# 6

Listing 10.4. Matching on type in C# 7 with is

Listing 10.5. Matching on type in C# 7 with switch

Listing 10.6. A custom Pattern class enabling expression-based pattern matching

Listing 10.7. Modeling state transitions

Listing 10.8. Recovering the present state of an entity from its event history

Listing 10.9. Top-level command-handling workflow

Listing 10.10. Ensuring only valid transitions take place

Listing 10.11. Command handling, with validation

Listing 10.12. The view model for a bank statement

Listing 10.13. Calculating start and end balance

(403)

Listing 10.14. Populating the list of transactions on the statement

Chapter 11. Lazy computations, continuations, and the beauty of monadic composition

Listing 11.1. Definition of Map for Func<T>

Listing 11.2. Definition of Bind for Func<T>

Listing 11.3. Unsafely extracting data from a JSON object

Listing 11.4. Safely extracting data from a JSON object

Listing 11.5. Definition of Bind for Try<T>

Listing 11.6. Nested callbacks are hard to read

Listing 11.7. A two-block middleware pipeline combining timing and connection
management

Listing 11.8. A pipeline that provides connection and transaction management

Chapter 12. Stateful programs and stateful computations

Listing 12.1. Stateless implementation of a simple program to look up FX rates

Listing 12.2. Stateful implementation keeping a cache of rates, without state mutation

Listing 12.3. Converting a recursive function to a loop with a local mutable variable

Listing 12.4. The program refactored to use Try for error handling

Listing 12.5. A stateful computation returning a pseudo-random number

Listing 12.6. Definition of Map for Generator<T>

Listing 12.7. Building upon NextInt to generate other types

Listing 12.8. Defining a function that generates a pair of random integers

Listing 12.9. Definition of Bind for Generator<T>

Listing 12.10. Generating a list of random numbers

Listing 12.11. Numbering the leaves of a tree by explicitly passing a counter value

Listing 12.12. Numbering the leaves of a tree using LINQ to take care of passing the state

Chapter 13. Working with asynchronous computations

Listing 13.1. Blocking the current thread while a network call completes

Listing 13.2. Using Task to represent an asynchronous operation

Listing 13.3. Map and Bind can be defined trivially in terms of await

(404)

Listing 13.4. Using LINQ comprehensions with Tasks

Listing 13.5. Retrying with exponential backoff

Listing 13.6. Implementation of Apply for Task

Listing 13.7. Performing two Tasks in parallel with Apply

Listing 13.8. Bind runs tasks sequentially, Apply in parallel

Listing 13.9. Monadic Traverse with an Option-returning function

Listing 13.10. Safely parses and sums a comma-separated list of numbers

Listing 13.11. Monadic Traverse with a Validation-returning function

Listing 13.12. Applicative Traverse with a Validation-returning function

Listing 13.13. Program that safely parses and sums a comma-separated list of numbers

Listing 13.14. Aggregating errors from multiple validators

Listing 13.15. Making Validation traversable

Listing 13.16. Skeleton of the MakeTransfer command handler

Listing 13.17. The command handler, refactored to include asynchrony and validation

Chapter 14. Data streams and the Reactive Extensions

Listing 14.1. Subscribing to the messages produced by an IObservable

Listing 14.2. Creating an IObservable that signals every second

Listing 14.3. Modeling user inputs as a stream

Listing 14.4. Creating an IObservable from messages published to Redis

Listing 14.5. Safely performing a Task and returning two streams

Listing 14.6. The program refactored to safely handle errors

Listing 14.7. Detecting when the user presses the Alt-K-B key sequence

Listing 14.8. Sampling a value from an IObservable every 10 minutes

Listing 14.9. Signalling whenever an account becomes overdrawn

Chapter 15. An introduction to message-passing concurrency

Listing 15.1. Idealized implementation of an agent

Listing 15.2. Implementation of an agent that builds upon Dataflow.ActionBlock

(405)

Listing 15.3. Setting up the handling of requests received from the message broker

Listing 15.4. A coordinating agent routes requests to a per-currency-pair agent

Listing 15.5. An agent that manages lookup and storage of an FX rate for a currency pair

Listing 15.6. Hiding an agent-based implementation behind a public API

Listing 15.7. Sequential processing of commands that affect an account

Listing 15.8. A registry for storing and managing the creation of AccountProcesses

Listing 15.9. Different types of message can be required to convey the caller’s intention

Listing 15.10. Revised definition of the agent for storing a registry of AccountProcesses

Listing 15.11. Wiring up the application components in an IControllerActivator

(406)

	Dedication
	About this Book
	Who should read this book
	How this book is organized
	Code conventions and downloads
	Book forum
	About the author
	Part 1. Core concepts
	Chapter 1. Introducing functional programming
	1.1. What is this thing called functional programming?
	1.2. How functional a language is C#?
	1.3. Thinking in functions
	1.4. Higher-order functions
	1.5. Using HOFs to avoid duplication
	1.6. Benefits of functional programming
	Chapter 2. Why function purity matters
	2.1. What is function purity?
	2.2. Purity and concurrency
	2.3. Purity and testability
	2.4. Purity and the evolution of computing
	Chapter 3. Designing function signatures and types
	3.1. Function signature design
	3.2. Capturing data with data objects
	3.3. Modeling the absence of data with Unit
	3.4. Modeling the possible absence of data with Option
	Chapter 4. Patterns in functional programming
	4.1. Applying a function to a structure’s inner values
	4.2. Performing side effects with ForEach
	4.3. Chaining functions with Bind
	4.4. Filtering values with Where
	4.5. Combining Option and IEnumerable with Bind
	4.6. Coding at different levels of abstraction
	Chapter 5. Designing programs with function composition
	5.1. Function composition
	5.2. Thinking in terms of data flow
	5.3. Programming workflows
	5.4. An introduction to functional domain modeling
	5.5. An end-to-end server-side workflow
	Part 2. Becoming functional
	Chapter 6. Functional error handling
	6.1. A safer way to represent outcomes
	6.2. Chaining operations that may fail
	6.3. Validation: a perfect use case for Either
	6.4. Representing outcomes to client applications
	6.5. Variations on the Either theme
	Chapter 7. Structuring an application with functions
	7.1. Partial application: supplying arguments piecemeal
	7.2. Overcoming the quirks of method resolution
	7.3. Curried functions: optimized for partial application
	7.4. Creating a partial-application-friendly API
	7.5. Modularizing and composing an application
	7.6. Reducing a list to a single value
	Chapter 8. Working effectively with multi-argument functions
	8.1. Function application in the elevated world
	8.2. Functors, applicatives, monads
	8.3. The monad laws
	8.4. Improving readability by using LINQ with any monad
	8.5. When to use Bind vs. Apply
	Chapter 9. Thinking about data functionally
	9.1. The pitfalls of state mutation
	9.2. Understanding state, identity, and change
	9.3. Enforcing immutability
	9.4. A short introduction to functional data structures
	Chapter 10. Event sourcing: a functional approach to persistence
	10.1. Thinking functionally about data storage
	10.2. Event sourcing basics
	10.3. Architecture of an event-sourced system
	10.4. Comparing different approaches to immutable storage
	Part 3. Advanced techniques
	Chapter 11. Lazy computations, continuations, and the beauty of monadic composition
	11.1. The virtue of laziness
	11.2. Exception handling with Try
	11.3. Creating a middleware pipeline for DB access
	Summary
	Chapter 12. Stateful programs and stateful computations
	12.1. Programs that manage state
	12.2. A language for generating random data
	12.3. A general pattern for stateful computations
	Summary
	Chapter 13. Working with asynchronous computations
	13.1. Asynchronous computations
	13.2. Traversables: working with lists of elevated values
	13.3. Combining asynchrony and validation (or any other two monadic effects)
	Summary
	Chapter 14. Data streams and the Reactive Extensions
	14.1. Representing data streams with IObservable
	14.2. Creating IObservables
	14.3. Transforming and combining data streams
	14.4. Implementing logic that spans multiple events
	14.5. When should you use IObservable?
	Summary
	Chapter 15. An introduction to message-passing concurrency
	15.1. The need for shared mutable state
	15.2. Understanding message-passing concurrency
	15.3. Functional APIs, agent-based implementations
	15.4. Message-passing concurrency in LOB applications
	Summary
	Inverted chapter dependency graph

